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Abstract 

Enzymatic heme and non-heme high-valent iron-oxo species are known to 

activate strong C–H bonds with relative ease, yet duplicating this reactivity in a synthetic 

system remains a formidable challenge. While the instability of the terminal iron-oxo 

moiety is perhaps the foremost obstacle, steric and electronic factors also limit the 

activity of previously reported mononuclear iron(IV)-oxo compounds. In particular, 

while nature’s non-heme iron(IV)-oxos possess high-spin S = 2 ground states, this 

electronic configuration has proven difficult to achieve in a molecular species. These 

challenges may be mitigated within metal-organic frameworks featuring site-isolated iron 

centers in a constrained, weak-field ligand environment. Here, we show that the metal-

organic framework Fe2(dobdc) and its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc), 

are able to convert ethane into ethanol and acetaldehyde using nitrous oxide as the 

terminal oxidant. Electronic structure calculations indicate that the active oxidant is likely 

a high-spin S = 2 iron(IV)-oxo species. 
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Introduction 

The selective and efficient conversion of light alkanes into value-added chemicals 

remains an outstanding challenge with tremendous economic and environmental 

impact,1,2 especially considering the recent worldwide increase in natural gas reserves.3 In 

nature, C–H functionalization is carried out by copper and iron metalloenzymes, which 

activate dioxygen and, through metal-oxo intermediates, facilitate two- or four-electron 

oxidations of organic substrates.4,5,6,7 Duplicating this impressive reactivity in synthetic 

systems has been the focus of intense research. In particular, iron(IV)-oxo complexes 

have now been structurally characterized in various geometries (octahedral, trigonal 

bipyramidal) and spin states (S = 1, S = 2), and have proven to be competent catalysts for 

a variety of oxygenation reactions.8,9 However, in the absence of a protective protein 

superstructure, terminal iron-oxo species are highly susceptible to a variety of 

decomposition pathways, including dimerization to form oxo-bridged diiron complexes, 

intramolecular ligand oxidation, and solvent oxidation.10 Tethering a molecular iron 

species to a porous solid support such as silica or polystyrene could potentially prevent 

many of these side-reactions. In practice, however, complexes heterogenized in this 

manner are challenging to characterize by available techniques, and additional problems 

associated with steric crowding, site inaccessibility, and metal leaching inevitably 

arise.11,12 Iron cations can also be incorporated into zeolites, either as part of the 

framework or at extraframework sites, producing reactive iron centers that have no direct 

molecular analogue. Fe-ZSM-5, for example, has been shown to oxidize methane to 

methanol stoichiometrically when pretreated with nitrous oxide.13 However, 
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characterization of these materials is nontrivial due to the presence of multiple iron 

species, and the nature of the active sites in Fe-ZSM-5 remains largely a matter of 

speculation.14 

The use of a metal-organic framework to support isolated terminal iron-oxo 

moieties is a currently unexplored yet highly promising area of research. The high surface 

area, permanent porosity, chemical and thermal stability, and synthetic tunability 

displayed by many of these materials makes them appealing in this regard. Additionally, 

metal-organic frameworks are typically highly crystalline with well-defined metal centers 

suited for characterization by single crystal and/or powder diffraction techniques. 

Furthermore, while molecular iron(IV)-oxo complexes generally utilize nitrogen-based 

chelating ligands, the metal cations in metal-organic frameworks are often ligated by 

weaker-field ligands, such as carboxylates and aryloxides, which are constrained in their 

coordination position by the extended framework structure. Thus, in addition to increased 

stability, terminal oxos in these materials might also have novel electronic properties and 

reactivity imparted by their unique coordination environment.   

Herein, we show that the high-spin iron(II) centers within Fe2(dobdc) (dobdc4− = 

2,5-dioxido-1,4-benzenedicarboxylate) can activate N2O, most likely forming a transient, 

high-spin iron(IV)-oxo intermediate, which rapidly reacts to afford Fe2(OH)2(dobdc). 

Significantly, the magnesium-diluted analogue, Fe0.1Mg1.9(dobdc), is found to selectively 

oxidize ethane to ethanol in the presence of N2O under mild conditions.  
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Results and Discussion  

Of the three-dimensional iron(II)-containing metal-organic frameworks shown to 

be stable to desolvation,15,16,17,18 few possess coordinatively-unsaturated metal centers in a 

single, well-defined environment. The compound Fe2(dobdc) (1), also known as Fe-

MOF-74 or CPO-27-Fe, is rare in this regard, as the hexagonal channels of the 

framework are lined with a single type of square pyramidal iron(II) site (see Figure 1a). 

The high density and redox-active nature of these open metal sites engender excellent 

O2/N2 and hydrocarbon separation properties.18,19 However, with respect to the reactivity 

of the framework, only the hydroxylation of benzene to phenol and the oxidation of 

methanol to formaldehyde have been reported.20,21 Thus, we embarked on a study of its 

reactivity towards nitrous oxide, a gaseous two-electron oxidant and O-atom transfer 

agent that is widely employed in industry, anticipating the generation of a highly reactive 

iron(IV)-oxo species capable of oxidizing strong C–H bonds. 

We first investigated the binding of nitrous oxide to 1 under conditions in which 

the Fe–N2O interaction is reversible. Experimental studies on the coordination chemistry 

of N2O are scarce, as metal–N2O adducts are challenging to synthesize due to the poor σ-

donating and π-accepting properties of the molecule.22 Indeed, of the several proposed 

binding modes, only one—end-on, η1-N—has been structurally characterized in a 

molecular complex.23 To establish the coordination mode of N2O in 1, powder neutron 

diffraction data, which are very sensitive to the atomic assignment of O and N, were 

collected on a sample dosed with various loadings of N2O. At low loadings, the best fit 

was an average of approximately 60% η1-O and 40% η1-N coordination, with Fe–N2O 

distances of 2.42(3) and 2.39(3) Å, respectively. In both cases, a bent Fe–N2O angle close 
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to 120° is observed (see Figure 1b). Density functional theory (DFT) studies of N2O-

bound 1 using the M06 functional24 show excellent agreement with experiment (see 

Figure S20). Furthermore, these calculations predict the η1-O coordination mode to be 

favored over the η1-N mode by just 1.1 kJ/mol (see Tables S17 and S22). This is 

consistent with the nearly equal population split observed, although the magnitude of the 

difference is smaller than the reliability of the calculations.  

While η1-O coordination with a bent Fe–O–N angle has been proposed in a 

variety of systems ranging from isolated metal atoms to iron zeolites, 22,25,26 η1-N 

coordination with a bent Fe–N–N angle is much more unusual. It suggests little π-back-

bonding from the metal d-orbitals into the π* of N2O, in contrast to previously reported 

vanadium and ruthenium–N2O adducts, which have linear metal–N–N–O geometries and 

for which π-interactions have been invoked as significant contributors to the stability of 

the complexes.23,27,28,29 The bent geometry, long Fe–N2O bond length, and mixed N- and 

O-coordination indicate N2O is bound only weakly to the iron(II) centers in the 

framework, a hypothesis corroborated by in-situ transmission-mode infrared 

spectroscopy. Spectra collected on a thin-film of 1 dosed at room temperature with N2O 

display a maximum at 2226 cm–1, which is very close to the fundamental ν(N–N) 

transition for unbound N2O (2224 cm–1), suggesting a physically adsorbed phase with 

little to no perturbation of the N2O molecule (see Figure S1). As expected, this interaction 

is fully reversible, and the band completely disappears under applied vacuum. Consistent 

with these experimental results, DFT studies calculate binding energies of 45.6 and 44.5 

kJ/mol for the η1-O and η1-N modes, respectively, with a natural bond order analysis30 

showing weak back-bonding in both configurations (see Table S23). 



	
   	
   	
  

	
  

6 

	
  

Upon heating the N2O-dosed framework to 60 °C, the material undergoes a drastic 

color change from bright green to dark red-brown that is suggestive of oxidization. In 

addition, in situ infrared studies using CO as a probe molecule show that the open metal 

sites, which coordinate CO strongly, have been almost entirely consumed (see Figure 

S9). Characterization of the resulting product is consistent with the formulation 

Fe2(OH)2(dobdc) (2), in which each iron center is in the +3 oxidation state and bound to a 

terminal hydroxide anion (see Figure 2a). Compound 2 is likely formed via a fleeting 

iron-oxo intermediate, which rapidly undergoes H-atom abstraction, although the source 

of the H-atom has not been determined. Mössbauer spectroscopy was used to probe the 

local environment of the iron centers in the oxidized material. The 57Fe Mössbauer 

spectrum of 2 consists of a doublet characterized by an isomer shift (δ) of 0.40(2) mm/s 

and a quadrupole splitting (|ΔEQ|) of 0.96(1) mm/s (see Figure 2b). The isomer shift for 

the iron centers in 2 is similar to the parameters obtained for the peroxide-coordinated 

iron(III) centers in Fe2(O2)(dobdc),18 and is consistent with other high-spin heme and 

nonheme iron(III) species.31,32,33 In addition, the infrared spectrum of 2 shows the 

appearance of two new bands as compared to the unoxidized framework, which we 

assign as Fe–OH (667 cm–1) and O–H (3678 cm–1) vibrations. These bands shift to 639 

and 3668 cm–1, respectively, when N2
18O is employed for the oxidation; the observed 

differences of 28 and 10 cm–1 are very close to the theoretical isotopic shifts of 27 and 12 

cm–1 predicted by a simple harmonic oscillator model (see Figure 3a). Partial oxidation of 

the framework is achieved by heating at 35 °C for 12 h, leading to the formation of 

Fe2(OH)0.6(dobdc) (2ʹ′ʹ′), which has a similar infrared spectrum (though the bands 

associated with Fe–OH are less intense) and Mössbauer parameters (see Table S9). 
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The framework maintains both crystallinity and porosity after oxidation, with a 

Brunauer-Emmett-Teller (BET) surface area of 1013 m2/g and a Langmuir surface area of 

1171 m2/g. Rietveld analysis of powder X-ray diffraction data collected at 100 K on 2 

firmly establishes the presence of a new Fe–O bond, but does not reveal whether a 

hydrogen atom is present. However, the Fe–OH bond distance of 1.92(1) Å is consistent 

with the bond lengths of previously reported octahedral iron(III)-hydroxide complexes 

(1.84-1.93 Å) (see Figure 3b).34 In addition, the trans Fe–Oaxial bond is slightly elongated 

(Fe–Oaxial = 2.20(1) Å; average Fe–Oequatorial = 2.04(1) Å), with the iron center shifted 

slightly out of the plane of the four equatorial oxygen atoms by 0.23(1) Å. EXAFS 

analysis of the same sample, as well as periodic DFT calculations, provide bond lengths 

that are consistent with those obtained from the diffraction data (see Table S8). 

Surprisingly, the iron(III)-hydroxide species is capable of activating weak C–H 

bonds. When the partially oxidized sample 2ʹ′ʹ′  is exposed to 1,4-cyclohexadiene (C–H 

bond dissociation energy of 305 kJ/mol)35 at room temperature, benzene is produced as 

the sole product in quantitative yield. In the process, the framework converts entirely 

back to iron(II), as determined by Mössbauer spectroscopy. Such reactivity is rare but not 

unprecedented for iron(III)-hydroxide compounds. For instance, lipoxygenase, an 

enzyme that converts 1,4-dienes into alkyl hydroperoxides, is believed to proceed 

through a non-heme ferric hydroxide intermediate,5 and several molecular lipoxygenase 

mimics have also been reported to activate the C–H bond of 1,4-cyclohexadiene and 

other 1,4-dienes.36,37 However, the oxidizing power of 2 and 2ʹ′ʹ′  is limited, and no reaction 

is observed with less activated C–H bonds. 
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Because the isolation of an iron(III)-hydroxide product from a reaction employing 

a two-electron oxidant strongly suggests the intermediacy of an iron(IV)-oxo species, we 

next carried out the oxidation in the presence of a hydrocarbon substrate containing 

stronger C–H bonds, specifically ethane (C–H bond dissociation energy of 423 kJ/mol), 

hoping to intercept the oxo species before its decay. Indeed, flowing an N2O:ethane:Ar 

mixture (10:25:65) over the framework at 75 °C led to the formation of various ethane-

derived oxygenates, including ethanol, acetaldehyde, diethyl ether, and other ether 

oligomers, as determined by 1H NMR spectroscopy of the extracted products. The 

formation of ether products is not unprecedented, as N2O-treated Fe-ZSM-5 forms a 

small amount of dimethylether in addition to methanol when exposed to methane, via a 

mechanism proposed to involve methyl radicals as well as multiple iron sites.38 We 

hypothesized that the complex mixture of products was related to the close proximity of 

reactive iron centers, which are 8.75(2) Å and 6.84(1) Å apart across and along a channel, 

respectively, in 1. To avoid oligomerization and over-oxidation, a mixed-metal metal-

organic framework, Fe0.1Mg1.9(dobdc) (3), in which the iron(II) sites are diluted with 

redox-inactive magnesium(II) centers, was synthesized. The BET surface area of 1670 

m2/g for this material falls between the surface areas of the pure iron and pure magnesium 

frameworks (1360 and 1800 m2/g, respectively). While determining the exact distribution 

of metal centers in heterometallic metal-organic frameworks is challenging, the unit cell 

parameters of 3 are also in between those of Fe2(dobdc) and Mg2(dobdc) (see Table S10), 

suggesting the formation of a solid solution rather than a mixture of two separate phases. 

Additionally, the Mössbauer spectrum of 3 shows sharp doublets with a significantly 

different quadrupole splitting than the all-iron analogue (2.25(1) mm/s versus 2.02(1) 
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mm/s in Fe2(dobdc); see Table S9), indicating that the iron centers in the magnesium-

diluted framework are in an altered, but uniform, environment. Thus, 3 is likely best 

described as containing either isolated iron centers or short multiiron segments dispersed 

evenly throughout a magnesium-based framework. 

Exposure of 3 to N2O and ethane under the same flow-through conditions yields 

the exclusive formation of ethanol and acetaldehyde in a 10:1 ratio, albeit in low yield 

(60% with respect to iron). Gas chromatography analysis of the headspace reveals no 

ethanol, acetaldehyde, or CO, suggesting the products remain bound to the framework 

(either at open iron or open magnesium sites), which likely explains the high ethanol 

selectivity. While the framework is still highly crystalline after N2O/ethane treatment, 

Mössbauer spectroscopy reveals that roughly 90% of the iron centers have decayed into a 

species with similar spectral parameters as 2 (see Figure S18 and Table S9). We propose 

that formation of iron(III)-hydroxide or alkoxide decay products prematurely halts the 

catalytic cycle, which leads to substoichiometric yields of hydroxylated product (see 

Figure 4). Because glass can be a source of H-atoms, the reaction was subsequently 

repeated in a batch, rather than flow-through mode, in a Teflon-lined stainless-steel 

bomb, which produced both higher yields with respect to iron (turnover number = 1.6) 

and selectivities (25:1 ethanol:acetaldehyde), showing that the system can indeed be 

modestly catalytic if competing substrates are excluded. However, the yield based on 

ethane (roughly 1%) is still too low for practical purposes.  

As the high reactivity of the iron-oxo species precluded isolation in both 

Fe2(dobdc) and its magnesium-diluted analog, electronic structure calculations were 

performed on Fe2(O)2(dobdc) (4) to gain insight into the geometric and electronic 
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structure of iron-oxo units supported within the framework. First, periodic PBE+U39,40 

geometry optimizations were performed on 4 for the singlet, triplet, and quintet spin 

states. A quintet ground state was predicted, with a short Fe–O bond length of 1.64 Å, 

consistent with that of previously reported iron(IV)-oxo complexes (see Figure 5 and 

Table S11).8 The periodic structure was then truncated to an 89-atom model cluster41,42 

containing three metal centers, six organic linkers, and an oxo moiety to facilitate 

calculations using more accurate methods. The cluster calculations were simplified by 

replacing the two peripheral iron(II) centers with closed-shell zinc(II) centers, which have 

the same charge and a similar ionic radius to iron(II) and magnesium(II) cations (see 

Figure S19). The geometry of this cluster was then optimized for the ground state, with 

all atoms except for the central iron and its first coordination sphere frozen at the 

coordinates from the periodic PBE+U optimization. As shown in Table 1, the M0624 

calculations also predict a quintet ground state. Further calculations were performed with 

several other exchange-correlation functionals, and in each case the ground state was 

found to be a quintet (see Tables S11–S16). Note that similar results were obtained when 

the Zn(II) centers in the 89-atom cluster were replaced with Mg(II) centers (see Tables 

S20 and S21).    

The electronic structure of the cluster model of 4 was further examined with 

single-point multiconfigurational complete active space (CASSCF) calculations followed 

by second-order perturbation theory (CASPT2).43,44 Again, the ground state is predicted 

to be the quintet state (see Table 1 and Table S18). Both M06 and CASPT2 yield a spin 

density of ~3.7 on iron, consistent with four unpaired spins mainly localized on the metal 

(see Tables S13 and S19). Density functional and CASPT2 calculations were also 
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performed on the cluster model of 2; all calculations led to a high-spin sextet ground state 

for the iron(III) center (see Tables S11–S16 and Table S18). 

 

Table 1 | Calculated relative energies (kJ/mol) of the cluster model of 4.  
 

S M06 CASPT2 
0 210.6 249.4 
1 136.4 127.6 
2 0.0 0.0 

 

While spectroscopic and theoretical studies have long attributed the reactivity of 

non-heme enzymatic and synthetic iron(IV)-oxo complexes to a quintet spin state,45 only 

a small handful of mononuclear high-spin iron(IV)-oxo species have been 

characterized,46,47,48,49 with all but one exhibiting a trigonal bipyramidal coordination 

geometry. 50 In these systems, the oxo moiety is either extremely unstable—

[Fe(O)(H2O)5]2+, for example, has a half life of roughly 10 s—or inaccessible to 

substrates due to bulky ligand scaffolds, leading to sluggish reactivity. On the other hand, 

the Fe2(dobdc) framework features sterically accessible, site-isolated metal centers 

entrenched in a weak-field ligand environment. Utilizing these two properties, it is 

possible not only to generate such a species, albeit fleetingly, but also to direct it towards 

the facile activation of one of the strongest C–H bonds known.  

 

Concluding remarks 

The foregoing results demonstrate through reactivity studies, detailed 

characterization of decay products, and theoretical calculations that the iron-based metal-

organic frameworks Fe2(dobdc) and Fe0.1Mg1.9(dobdc) are very likely capable of 
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supporting fleeting iron(IV)-oxo species possessing an unusual S = 2 spin state. With this, 

Fe2(dobdc) has now been shown to stabilize iron-superoxo, peroxo, hydroxo, as well as 

oxo intermediates, highlighting the promise of metal-organic frameworks both as 

catalysts and as scaffolds for interrogating reactive metal species. Future work will focus 

on: (i) further exploring the reactivity of Fe2(dobdc) and its expanded analogues with 

ethane and other hydrocarbon substrates, as well as continued efforts to isolate the iron-

oxo species, (ii) the use of dioxygen as the terminal oxidant in such systems, and (iii) the 

design, synthesis, and reactivity of other metal-organic frameworks with coordinatively-

unsaturated iron sites. 

 

Methods Summary 
Synthesis of Fe2(OH)0.6(dobdc) (2ʹ′ʹ′) and Fe2(OH)2(dobdc) (2) 
An evacuated Schlenk flask containing fully desolvated Fe2(dobdc) (100 mg, 0.33 mmol) 
was placed under an atmosphere of 30% N2O and 70% N2. The flask was immersed in an 
oil bath, and the temperature was increased by 10 °C every 12 h, from 25 °C up to 60 °C, 
to obtain Fe2(OH)2(dobdc) as a dark red-brown solid. When the reaction was stopped 
after 12 h at 35 °C, the partially oxidized Fe2(OH)0.6(dobdc) (as determined by Mössbauer 
spectroscopy) was obtained. Anal. Calc. for C8H4Fe2O8: C, 28.28; H, 1.19. Found: C, 
29.18; H, 1.16. IR (solid-ATR): 3679 (m), 1532 (s), 1450 (s), 1411 (s), 1361 (s), 1261 (s), 
1154 (w), 1129 (w), 1077 (w), 909 (m), 889 (s), 818 (s), 807 (s), 667 (s), 630 (m), 594 
(s), 507 (s). 
 
Synthesis of Fe0.1Mg1.9(dobdc) (3) 
In a 500-mL Schlenk flask, H4(dobdc) (1.8 g, 8.8 mmol), MgCl2 (1.5 g, 15 mmol), and 
FeCl2 (0.84 g, 6.6 mmol) were dissolved in a mixture of 310 mL of DMF and 40 mL of  
methanol. The reaction was stirred vigorously at 120 °C for 16 h. The precipitate was 
filtered and stirred with 250 mL of fresh DMF at 120 °C for 3 h. Two more DMF washes 
at 120 °C were performed, after which the precipitate was filtered and soaked in 
methanol at 60 °C. The methanol exchanges were repeated until no DMF stretches were 
apparent in the infrared spectrum. The framework was fully desolvated under dynamic 
vacuum (<15 μbar) at 210 °C for 2 days to afford Fe0.1Mg1.9(dobdc) as a bright yellow-
green solid (2.0 g, 8.2 mmol, 93% yield). The iron to magnesium ratio was determined by 
ICP-OES. Anal. Calc. for C8H2Fe0.1Mg1.9O6: C, 39.08; H, 0.82. Found: C, 39.37; H, 0.43. 
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IR (solid-ATR): 1577 (s), 1484 (m), 1444 (s), 1429 (s), 1372 (s), 1236 (s), 1210 (s), 1123 
(m), 911 (m), 892 (s), 828 (s), 820 (s), 631 (s), 584 (s), 492 (s). 
 
Reactivity of Fe2(dobdc) (1) and Fe0.1Mg1.9(dobdc) (3) with N2O and C2H6 

In a typical flow-through experiment, a mixture of gases (2 mL/min N2O, 10 mL/min 
C2H6, and 8 mL/min Ar for a total flow 20 mL/min) was flowed over a packed bed of 
metal-organic framework (50 to 100 mg) contained within a glass column. The column 
was heated to 75 °C for 24 h, after which the products were extracted with CD3CN (3 × 1 
mL) and analyzed by 1H NMR using 1,4-dichlorobenzene as an internal standard. While a 
cold bath maintained at –78 °C was installed downstream of the glass reactor in order to 
collect condensable organic products, at the temperatures tested all the products appeared 
to remain bound to the framework. 
 
In a typical batch experiment, a Parr bomb was charged with N2O (1.5 bar) and C2H6 (7.5 
bar) and heated to 75 °C in a sand bath. After 24 h, the bomb was cooled and the products 
extracted with CD3CN. 
 
Electronic structure calculations 
The structures of 2 and 4 were optimized using periodic boundary conditions and the 
PBE+U exchange-correlation functional. From each of these structures, we carved out a 
model cluster containing three iron centers along a single helical chain and six organic 
linkers.  These clusters are analogous to the 88-atom cluster model of Fe2(dobdc) 
employed previously.41 The cluster models were further simplified by substituting the two 
peripheral iron(II) centers with zinc(II) centers, while keeping only the central iron(II) in 
the cluster. Constrained geometry optimizations were performed where only the central 
iron and the six oxygen atoms (plus the hydroxide hydrogen in compound 2) of its first 
coordination sphere were allowed to relax. Single-point multiconfigurational complete 
active space (CASSCF) calculations followed by second-order perturbation theory 
(CASPT2) were performed at PBE-optimized (PBE/SDD(Fe,Zn),6-31G(d)(C, H, O)) 
geometries of the cluster models of 2 and 4.   
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Figure 1 | Structure of bare and N2O-dosed Fe2(dobdc). a. Structure of Fe2(dobdc), 
showing hexagonal channels lined with 5-coordinate iron(II) sites. The view is down the 
c axis, along the helical chains of iron(II) ions. b. Experimental structures for N2O 
binding in Fe2(dobdc) loaded with 0.35 equivalents of N2O at room temperature and then 
slowly cooled to 10 K. The molecule binds with a bent Fe–N2O angle, with a mixture of 
60% η1–O coordination and 40% η1–N coordination. For comparison of calculated 
structures with experimental, see Figure S20. 
 
  



 
Figure 2 | Preparation and Mössbauer spectrum of Fe2(OH)2(dobdc). a. Reaction 
scheme for the preparation of 2 from Fe2(dobdc). b. Mössbauer spectrum of 2, with the fit 
in black. The red component has parameters consistent with high-spin Fe(III) (δ = 0.40(2) 
mm/s, |ΔEQ|, = 0.96(1) mm/s, area = 80(2)%). A minor component (green) is assigned as 
unreacted Fe(II) sites, and another minor component (purple) is assigned as an 
amorphous Fe(III) decomposition product.  
 
  



 
Figure 3 | Structure and infrared spectrum of Fe2(OH)2(dobdc). a. Infrared spectrum 
of a partially oxidized sample, Fe2(OH)0.6(dobdc) (black) and Fe2(18OH)0.6(dobdc) (dotted 
red). The peaks at 667 and 3678 cm–1

 shift to 639 and 3668 cm–1, respectively, upon 18O 
labeling. b. The structure of Fe2(OH)2(dobdc) obtained by powder X-ray diffraction data 
(100 K). Selected interatomic distances (Å) for 1: Fe–O1 = 1.92(1); Fe–O2 = 2.01(1); Fe–
O3 = 2.08(1); Fe–O4 = 2.04 (1); Fe–O5 = 2.04(1); Fe–O6 = 2.20(1); Fe–Fe = 3.16(1). 
 
  



 
 
Figure 4 | N2O activation and reactivity of Fe2(dobdc).  
 
  



 
Figure 5 | Structure and qualitative MO diagram of Fe2(O)2(dobdc). DFT and 
CASSCF/PT2 studies predict a short iron-oxo bond (1.64 Å) and a high-spin, S = 2 spin 
ground state for iron(IV)-oxos installed in the Fe2(dobdc) framework. Selected 
interatomic distances (Å) for 1: Fe–O1 = 1.638; Fe–O2 = 2.004; Fe–O3 = 2.127; Fe–O4 = 
2.019; Fe–O5 = 2.054; Fe–O6 = 2.140. 
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 S-2 

1. Experimental 

 

1.1. General 

Unless otherwise noted, all procedures were performed under an N2 atmosphere using 

standard glove box or Schlenk techniques. N,N-dimethylformamide (DMF) was dried 

using a commercial solvent purification system designed by JC Meyer Solvent Systems 

and then stored over 4 Å molecular sieves. Anhydrous methanol was purchased from 

commercial vendors, further dried over 3 Å sieves for 24 hours, and deoxygenated prior 

to being transferred to an inert atmosphere glove box, where it was stored over 3 Å 

molecular sieves. The ethane, argon, and nitrous oxide used in reactivity studies were 

purchased at 99.999%, 99.999%, and 99.998% purity, respectively. The 30% N2O/N2 

mixture used to synthesize Fe2(OH)2(dobdc) was purchased from commercial vendors 

using 99.5% purity N2O and 99.999% purity N2. All other reagents were obtained from 

commercial vendors at reagent grade purity or higher and used without further 

purification. 

 

Carbon, hydrogen, and nitrogen analyses were obtained from the Microanalytical 

Laboratory at the University of California, Berkeley. 
1
H-NMR spectra were obtained 

using a Bruker AVB-400 instrument and peaks were referenced to residual solvent peaks. 

 

1.2. Transmission and ATR Infrared Spectroscopy 

Attenuated total reflectance infrared spectra were collected at 4 cm
–1

 resolution on a 

Perkin Elmer Avatar Spectrum 400 FTIR spectrometer equipped with a Pike attenuated 

total reflectance accessory. The instrument was placed inside an N2-filled glove bag for 

measurement of air-sensitive samples. 

 

In situ transmission FTIR spectra were collected at 2 cm
–1

 resolution on a Bruker Vertex 

70 spectrophotometer equipped with a DTGS detector. The materials were examined in 

the form of self-supporting pellets (~15–20 mg/cm
2
) mechanically protected with a pure 

gold frame. Samples were inserted in a homemade quartz IR cell, equipped with KBr 

windows and characterized by a very small optical path. The cell was attached to a 

conventional high vacuum glass line capable of a residual pressure less than 10
–4

 mbar. 

This setting allows both thermal treatment and adsorption–desorption cycles of molecular 

probes in situ. All materials were prepared and inserted into the IR cell inside an N2-filled 

glove box to avoid contact with oxygen and moisture. Fe2(dobdc) samples were activated 

under dynamic vacuum (residual pressure <10
–4

 mbar) at 433 K for 18 h before being 

contacted with increasing pressures of N2O (up to 40 mbar) (see Figure S1).  

 

Contact with 40 mbar of N2O causes the appearance of extremely strong bands in the 

2280–2160 cm
–1

 spectral range, associated with ν(N–N) of N2O, while the rest of the IR 
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spectrum is substantially unaffected. Dominant absorptions due to the framework modes 

below 1600 cm
–1

 does not allow the monitoring of the ν(N–O) band in N2O, expected to 

be around 1286 cm
–1

. The spectrum profile testifies the formation of a condensed phase 

inside the Fe2(dobdc) channels, as the ν(N–N) does not present the expected profile of a 

free linear rotator (P and R branches with the lack of the pure vibrational transition, Q 

branch). 

 

Figure S1b illustrates in detail the spectral range due to ν(N–N) band (spectra reported 

after background subtraction). The spectrum at highest coverage (blue curve) is 

characterized by a very intense band, ascribable to the ν(N–N) in N2O molecule, 

behaving as an hindered rotator. The maximum is observed at 2226 cm
–1

, a position very 

close to that expected for the fundamental transition of pure N2O molecule (2224 cm
–1

). 

The very small blue shift with respect to the position of N2O gas allows us to assert that 

N2O interacts weakly with the Fe(II) species, giving rise to a physically adsorbed (liquid-

like) phase. The main peak is accompanied by further components at higher (clear 

maximum at 2240 cm
–1

) and lower (broad features at 2220, 2214 and 2206 cm
–1

) 

frequencies, suggesting that, at the measuring temperature (beam temperature), N2O 

molecule still partially maintains its roto-vibrational profile (compare the spectra with 

that obtained in case of gaseous N2O, blue dotted spectrum).  

 

In case of Fe-silicalite the appearance of a doublet at 2282 cm
–1 

and at 2248 cm
–1

 was 

assigned to the formation of two slightly different Fe–N2O adducts, while a component at 

2226 cm
–1

 was associated to the formation of weaker adducts with Bronsted sites.
1
 In the 

present case similar assignments are discarded, as all the above-mentioned signals 

disappear at the same rate upon outgassing at room temperature (see light grey spectra in 

Figure S1b). The total reversibility of these components further confirms the weak nature 

of the interaction of N2O with the Fe(II) sites in Fe2(dobdc) sample. 

 

Prolonged heating in N2O at 60 °C gives rise to a spectrum characterized by a strong 

band at 3678 cm
–1

 and by a clear component at 670 cm
–1

. The peak at 3678 cm
–1

 can be 

associated to the ν(O–H) and the component at 670 cm
–1 

can be ascribed to the ν(Fe–

OH). The formation of these hydroxide species is associated to the reactivity of N2O, as 

testified by the intensity decrease of the band due to adsorbed N2O (see inset (a) in Figure 

S8). 

 

1.3. Mössbauer Spectroscopy 

Iron-57 Mössbauer spectra were obtained at 295 K with a constant acceleration 

spectrometer and a cobalt-57 rhodium source. Prior to measurements the spectrometer 

was calibrated at 295 K with α-iron foil. Samples were prepared inside an N2-filled glove 

box and contained 20 mg/cm
2
 of sample (7 mg/cm

2
 of iron) diluted with boron nitride. 
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All spectra were fit with symmetric Lorentzian quadrupole doublets using the WMOSS 

Mössbauer Spectral Analysis Software (www.wmoss.org).
2
 

 

1.4. Low-Pressure Gas Adsorption Measurements 

For all gas adsorption measurements, 100–200 mg of sample were transferred to a 

preweighed glass sample tube under an atmosphere of nitrogen and capped with a 

Transeal. Samples were then transferred to a Micromeritics ASAP 2020 gas adsorption 

analyzer and heated at a rate of 0.1 K/min from room temperature to a final temperature 

of 433 K and 483 K for Fe2(dobdc) and Fe0.1Mg1.9(dobdc), respectively. Samples of 

Fe2(OH)2(dobdc) were degassed at room temperature. Samples were considered activated 

when the outgas rate at the degassing temperature was less than 2 μbar/min. Evacuated 

tubes containing degassed samples were then transferred to a balance and weighed to 

determine the mass of sample. The tube was transferred to the analysis port of the 

instrument where the outgas rate was again determined to be less than 2 μbar/min. 

Nitrogen gas adsorption isotherms at 77 K were measured in liquid nitrogen. 

 

1.5. Powder Neutron Diffraction Data Collection and Refinement 

Neutron powder diffraction (NPD) data (see Figures S2-S5) were collected on the high-

resolution neutron powder diffractometer, BT1, at the National Institute of Standards and 

Technology (NIST) Center for Neutron Research. A 2.027 g activated sample of 

Fe2(dobdc) was placed inside of a He-purged glove box and loaded into a vanadium 

sample can equipped with a gas loading lid. The sample was then sealed inside of the can 

using an indium o-ring and was then removed from the glove box and placed on a 

bottom-loading closed cycle refrigerator. The sample was first cooled to 10 K for data 

collection on the bare framework using a Ge(311) monochromator (λ = 2.0781 Å) and a 

60 minute collimator. Fe2(dobdc) was then warmed to room temperature where it was 

dosed with various predetermined amounts of N2O gas, approximately 0.35, 0.60, and 

1.25 N2O molecules per Fe
2+

 site. For each gas dosing the pressure was first allowed to 

equilibrate over a ten minute period at room temperature, and then the sample was slowly 

cooled to 10 K over a period of approximately 2.5 hours for data collection. All NPD data 

were analyzed using the Rietveld method as implemented in EXPGUI/GSAS software 

package.
3
 Fourier Difference Analysis of the bare Fe2(dobdc) framework revealed no 

excess scattering density in the channel indicating that the sample was sufficiently 

activated. The structural model of the activated material was refined with all structural 

and peak profile parameters free to vary, resulting in a structure very similar to that 

previously determined (see Table S1).
4
 Once completed, the same procedure was carried 

out for data obtained from the sample loaded with gas revealing both the site positions 

and orientations of framework bound N2O (see Tables S2-S4). 
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Unlike X-rays, neutrons are scattered from the nucleus allowing neighboring atoms with 

similar electron densities to exhibit nonlinear variations in scattering power. Nitrogen and 

oxygen have coherent scattering lengths of 9.36 fm and 5.80 fm, respectively.
5
 This 

implies that neutrons should be very sensitive to the atomic assignment of O and N, an 

especially important feature when considering the large esds associated with bond 

distances determined from position averaged powder data. Fourier Difference Analysis of 

the data obtained from the sample loaded with 0.35 N2O per Fe
2+

 reveals that the N2O 

binds in an end-on fashion with a distance of approximately 2.40(2) Å from the Fe
2+

 and 

is angled with respect to the framework surface at 118(2) (see Figure S6). For 

assignment of the atoms responsible for binding to the metal site, we have tried both 

Fe
2+

−O and Fe
2+

−N binding. First, the occupancies of the N–N–O atoms were 

constrained to be equal. Once a stable refinement was achieved, the occupancies of the 

individual atoms in the N2O molecule were allowed to vary independently of one another. 

In either case of M–O or M–N binding, the occupancies of both terminal N2O atoms 

deviate significantly from the average value and lead to an improvement in the overall 

refinement. The observed increase and/or decrease in the occupancies correlate with our 

expectations based on the known differences in scattering lengths of the O and N and the 

results imply that pure O or N coordination at the metal site is incorrect. Further, the 

structural model shows only average distances for both N–N and N–O, around 1.15 Å, 

and so a clear assignment of the binding mechanism of the N2O could not be made purely 

through assessment of bond distances. Considering all of these factors, we performed the 

refinement with mixed O and N binding of the N2O molecules revealing an average of 

approximately 60% O and 40% N at the open metal site. The intramolecular N2O angle 

was refined at a value of 178(2), which, within error of the neutron diffraction 

experiment, does not deviate from the expected linear geometry.  

 

At higher loadings (0.6 and 1.25 equivalents of N2O), disorder at the metal and the 

presence of multiple binding sites prevented accurate determination of the binding mode 

(see Figure S7). In particular, upon increasing the N2O loading to 0.6 and then 1.25 N2O 

per Fe
2+

, there is further population of the site I molecule and then the subsequent 

introduction of a secondary adsorption site. Population of binding site II appears to 

induce a rearrangement of the site I molecule, referred to from this point forward as site 

Ia (see Figure S7). While the data is not good enough to distinguish the binding 

mechanism in these two different orientations, we can see a significant change in the 

angle of the N2O with respect to the framework surface, which changes from ~120 to 

~145. Intermolecular distances between site I and II, on the order of 2.2 Å, are 

significantly shorter than the sum of the van der Waals radii for N (1.55 Å) and/or O 

(1.52 Å). As a result, this interaction is expected to be quite unfavorable. Further, the 

refined occupancies of site II, ~34%, and site I, ~68%, support the idea that the two sites 

are never simultaneously occupied. 
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1.6. Powder X-Ray Diffraction Data Collection and Refinement 

X-ray diffraction data on Fe2(OH)2(dobdc) were collected on Beamline 17-BM-B at the 

Advanced Photon Source at Argonne National Laboratory (see Figures S13-S14). The 

sample was first heated in the presence of N2O, from room temperature to 60 °C over the 

course of two days. Excess N2O was removed and the sample was pumped into an N2 

purged glove box where it was loaded into a 1.0 mm borosilicate capillary. The capillary 

was attached to a custom designed gas cell, to maintain an inert atmosphere, and then 

brought out of the glove box. The cell was then attached to an outgassing port on a 

Micromeritics ASAP 2020
**

, where the remaining N2 was removed and the sample was 

dosed with a small amount of He to serve as exchange gas. The capillary was then flame 

sealed for measurement. At 17-BM the capillary was mounted onto the goniometer head 

and then centered in the beam. Data was first collected at room temperature using a Si 

(111) monochromator (λ = 0.7291 Å, ΔE/E = 1.5*10
–4

) and then again after the sample 

was cooled at a rate of 2 K/min to 100 K in an N2 cryostream. It should be noted that the 

sample was held at 100 K for 30 minutes prior to data measurement to allow for 

temperature equilibration. Rietveld analysis was carried out on both data sets in order to 

elucidate the site positions of the OH groups on the Fe
3+ 

centers. Results of Rietveld 

analysis obtained from X-ray diffraction experiments of Fe2(OH)2(dobdc) can be seen in 

Tables S5-S6.  

 

For the unit cell determination of FexMg2-x(dobdc), a microcrystalline sample of the 

material was gently ground and loaded into a 1.0 mm borosilicate capillary inside an N2-

filled glove box. The sample was sealed temporarily with silicone grease before it was 

taken out of the box and flame-sealed. Diffraction data were collected during an 

overnight scan in the 2θ range of 4–65° with 0.02 steps using a Bruker AXS D8 

Advance diffractometer equipped with CuKα radiation (λ = 1.5418 Å), a Lynxeye linear 

position-sensitive detector, and mounting the following optics: Göbel mirror, fixed 

divergence slit (0.6 mm), receiving slit (3 mm), and secondary beam Soller slits (2.5°). 

The generator was set at 40 kV and 40 mA. A standard peak search, followed by indexing 

via the Single Value Decomposition approach,
6
 as implemented in TOPAS-Academic,

7
 

allowed the determination of approximate unit cell dimensions. Precise unit cell 

dimensions were determined by performing a structureless Le Bail refinement in 

TOPAS-Academic. 

 

1.7. EXAFS Data Collection and Refinement 

X-ray absorption spectra (XAS) were collected at the Advanced Light Source (ALS) on 

beamline 10.3.2 with an electron energy of 1.9 GeV and an average current of 500 mA. 

                                                        
** Commercial materials and equipment are identified in this paper only to specify adequately the 

experimental procedure. In no case does such identification imply recommendation by NIST nor does it 

imply that the material or equipment identified is necessarily the best available for this purpose.   
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The radiation was monochromatized by a Si(111) double-crystal monochromator. 

Intensity of the incident X-ray was monitored by an N2-filled ion chamber (I0) in front of 

the sample. Fluorescence spectra were recorded using a seven-element Ge solid-state 

detector. The rising K-edge energy of Fe metal foil was calibrated at 7111.20 eV.  

 

Data reduction of the XAS spectra was performed using custom-made software (Dr. 

Matthew Marcus). Pre-edge and post-edge contributions were subtracted from the XAS 

spectra, and the results were normalized with respect to the edge jump. Background 

removal in k-space was achieved through a five-domain cubic spline. Curve fitting was 

performed with Artemis and IFEFFIT software using ab initio-calculated phases and 

amplitudes from the program FEFF 8.2.
8,9

  

 

1.8. Synthesis 

 

Synthesis of Fe2(OH)0.6(dobdc) and Fe2(OH)2(dobdc) 

Fe2(dobdc) was synthesized according to previously reported procedures.
3a

 An evacuated 

schlenk flask containing fully desolvated Fe2(dobdc) (100 mg, 0.33 mmol) was placed 

under an atmosphere of 30% N2O and 70% N2. The flask was immersed in an oil bath, 

and the temperature was increased by 10 °C every 12 hours, from 25 °C up to 60 °C, to 

obtain Fe2(OH)2(dobdc) as a dark red-brown solid. If the reaction is stopped after 12 

hours at 35 °C, the partially oxidized Fe2(OH)0.6(dobdc) (as determined by Mössbauer) is 

obtained. Anal. Calc. for C8H4Fe2O8: C, 28.28; H, 1.19. Found: C, 29.18; H, 1.16. IR 

(solid-ATR): 3679 (m), 1532 (s), 1450 (s), 1411 (s), 1361 (s), 1261 (s), 1154 (w), 1129 

(w), 1077 (w), 909 (m), 889 (s), 818 (s), 807 (s), 667 (s), 630 (m), 594 (s), 507 (s). 

 

Synthesis of Fe2(
18

OH)0.6(dobdc) 

Dried 
18

O-labeled ammonium nitrate (50 mg, 0.58 mmol) was placed in a stainless steel 

reactor equipped with a two-way valve connected to a hose adapter. The reactor was 

evacuated and refilled with N2 (3x) and then heated, closed, to 200 °C. After 24 hours, 

the reactor was cooled to 0 °C, and the evolved N2
18

O was carefully condensed into an 

evacuated schlenk flask cooled to 77 K containing Fe2(dobdc) (15 mg, 0.05 mmol). The 

sample was allowed to react for 12 hours at 35 °C, after which the partially oxidized 

sample was analyzed by IR.  

 

Synthesis of Fe0.1Mg1.9(dobdc) 

In a 500 mL schlenk flask, H4(dobdc) (1.75 g, 8.8 mmol), MgCl2 (1.47 g, 15.4 mmol), 

and FeCl2 (0.84 g, 6.6 mmol) were dissolved in DMF (310 mL) and MeOH (40 mL). The 

reaction was stirred vigorously at 120 °C for 16 hours. The precipitate was filtered and 

stirred in fresh DMF (250 mL) at 120 °C for three hours. Two more DMF washes at 120 

°C were performed, after which the precipitate was filtered and soaked in methanol at 60 
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°C. The methanol exchanges were repeated until no DMF stretches were visible by IR. 

The framework was fully desolvated under dynamic vacuum (<15 μbar) at 210 °C for 2 

days to afford Fe0.1Mg1.9(dobdc) as a bright yellow-green solid (2.02 g, 8.2 mmol, 93% 

yield). Fe0.44Mg1.56(dobdc) and other analogs with different Fe:Mg ratios can be obtained 

by simply varying the ratio of MgCl2 and FeCl2 while keeping all other synthetic 

conditions the same. The iron to magnesium ratio was determined by ICP-OES. Anal. 

Calc. for C8H2Fe0.1Mg1.9O6: C, 39.08; H, 0.82. Found: C, 39.37; H, 0.43. IR (solid-ATR): 

1577 (s), 1484 (m), 1444 (s), 1429 (s), 1372 (s), 1236 (s), 1210 (s), 1123 (m), 911 (m), 

892 (s), 828 (s), 820 (s), 631 (s), 584 (s), 492 (s). 

 

1.9. Reactivity 

 

Cyclohexadiene Reactivity of Fe2(OH)0.6(dobdc)  

Neat cyclohexadiene (160 mg, 2.0 mmol) was added to Fe2(OH)0.6(dobdc) (66 mg, 0.125 

mmol Fe
III

, determined by Mössbauer) and allowed to react for 24 hours, during which a 

visible color change from red-brown to light yellow was observed. The sample was then 

extracted with CD3CN (3 x  1 mL), and the products analyzed by 
1
H NMR using 1,2,4,5-

tetramethylbenzene as an internal standard. Benzene as the sole product was obtained in 

quantitative yield. 

 

Reactivity of Fe2(dobdc) and Fe0.1Mg1.9(dobdc) with N2O and C2H6 

In a typical flow-through experiment, a mixture of gases (2 mL/min N2O, 10 mL/min 

C2H6, and 8 mL/min Ar for a total flow 20 mL/min) was flowed over a packed bed of 

metal–organic framework (50 to 100 mg) contained within a glass column. The column 

was heated to 75 °C for twenty-four hours, after which the products were extracted with 

CD3CN (3 x  1 mL) and analyzed by 
1
H NMR using 1,4-dichlorobenzene as an internal 

standard. While a cold bath maintained at –78 °C was installed downstream of the glass 

reactor in order to collect condensable organic products, at the temperatures tested all the 

products appear to remain bound to the framework. Yield for Fe0.1Mg1.9(dobdc): 9.5:1 

ethanol:acetaldehyde, 60% yield based on Fe. 

 

In a typical batch experiment, a Parr bomb was charged with 50-100 mg of 

Fe0.1Mg1.9(dobdc), N2O (1.5 bar), and C2H6 (7.5 bar) and heated to 75 °C in a sand bath. 

After twenty-four hours, the bomb was cooled and the products extracted with CD3CN. 

Yield for Fe0.1Mg1.9(dobdc): 25:1 ethanol:acetaldehyde, 1.6 turnovers based on Fe. In a 

typical experiment, this corresponds to functionalization of roughly 1% of the ethane 

molecules. 

 

Control Experiments 
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No products were observed if N2O, ethane, or Fe2(dobdc)/Fe0.1Mg1.9(dobdc) was removed 

from the reaction mixture. The same flow-through and batch experiments performed on 

Mg2(dobdc) led to no observed products. The same conditions applied to Fe2(dobdc) 

diluted in Mg2(dobdc) did not lead to a clean reaction (unlike Fe0.1Mg1.9(dobdc)). Finally, 

an autoxidation process was ruled out by repeating the batch experiment with added O2 (1 

bar), N2O (1.5 bar), and C2H6 (7.5 bar). The yield was significantly lower (11% based on 

iron) and the ethanol selectivity much worse (1:2.67 ethanol:acetaldehyde), indicating 

that the reported reactivity is not due to autoxidation. 
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2. Computational 

 

2.1. Periodic Systems  

Starting from the experimental powder X-ray crystal structure, the periodic structures for 

2 and 4 were fully optimized using periodic density functional theory as implemented in 

the Vienna ab initio simulation package (VASP)
10

 employing the generalized gradient 

approximation exchange-correlation functional PBE.
11

 A Hubbard U correction
12

 of 5 eV 

was added to the intra-site Coulomb interactions of the d-orbitals of the iron atoms to 

decrease the delocalization of electron density that results from the presence of the self-

interaction of electrons in the PBE non-hybrid density functional. The VASP calculations 

use projector-augmented wave potentials to describe the interaction between core and 

valence electrons. A plane-wave kinetic energy cutoff of 610 eV was used and the 

integration over the irreducible Brillouin zone was carried out over a 3x3x3 k-points grid. 

Atomic positions were relaxed until the forces were lower than 0.06 eV/A. All possible 

spin states were considered. 

 

2.2. Cluster Calculations 

From the initial periodic structures of 2 and 4, we designed two corresponding model 

clusters containing three neighboring metal centers (along a single helical chain) and their 

first coordination spheres. These clusters are analogous to the recently reported
13

 88-atom 

cluster for Fe2(dobdc), which contained three pentacoordinate Fe(II) centers and six 

organic linkers. As in the case of the 88-atom cluster model, the cluster model of 4 

(containing 89 atoms, equivalent to the 88-atom cluster plus an additional O atom 

coordinated to the central Fe) and the cluster model of 2 (containing 90 atoms, equivalent 

to the 88-atom cluster plus an additional OH group coordinated to the central Fe) were 

designed to maintain an overall zero charge for the model system and to preserve a good 

representation of the first coordination sphere of the central iron atom from the periodic 

structure. We note that the charge of the cluster was set to zero by addition of protons. 

The cluster models were simplified by substituting the two peripheral Fe(II) ions with 

Zn(II) ions, while keeping only the central Fe ion in the cluster (note that we do not 

replace Fe(II) ions by Zn(II) ions for the periodic calculations). 

 

Two-step constrained geometry optimizations were performed. In the first step, the 

protons added to neutralize the cluster charge were optimized, while all the other atoms 

were kept in fixed positions. In the second step, only the central Fe and its first 

coordination sphere were allowed to relax. The first coordination sphere consists of the 

Fe atom, the five O atoms of the bare MOF, and the atoms of the adsorbate (O, OH, or 

N2O); since this involves optimizing six atoms of the bare MOF, it is denoted “opt6” in 

the notation of our previous work.
13

 All the optimizations were followed by frequency 
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calculations to confirm that the stationary point was a minimum, which was indicated by 

the absence of any imaginary frequency in the optimized degrees of freedom.  

 

All density functional cluster calculations used the Gaussian 09 software package or a 

locally modified version
 
of Gaussian 09.

14
 The PBE,

11
 M06-L,

15
 M06,

16
 M08-SO,

17
 

MPW1B95,
18

 and PW6B95
19

 exchange-correlation functionals were employed. For the 

Minnesota density functionals (M06-L, M06, M08-SO, MPW1B95, and PW6B95), an 

ultrafine grid (99 radial nodes and 590 angular nodes) was used to perform numerical 

integrations. The stable=opt keyword of Gaussian was used to test the stability of the 

Kohn-Sham Slater determinant and converge to a stable solution. An automatic density-

fitting set generated by the Gaussian program was used to reduce the cost for calculations 

done with the local density functionals, PBE and M06-L. The 6-31G(d)
20

 basis set was 

used for H, C, N, O, and Mg while the Stuttgart [8s7p6d1f | 6s5p3d1f] ECP10MDF 

contracted effective core potential basis set
21

 was employed for Fe and Zn. Single-point 

calculations were performed with the 6-311+G(2df,p)
22

 basis set for H, C, and O and the 

Stuttgart [8s7p6d1f | 6s5p3d1f] ECP10MDF contracted effective core potential basis set 

for Fe and Zn. These basis sets have been previously successfully employed in the study 

of molecular systems with similar M=O and M–OH motifs.
 23

  

 

2.3. Multireference Calculations  

Single-point multiconfigurational complete active space
24

 (CASSCF) calculations 

followed by second-order perturbation theory (CASPT2)
 25

 were performed at the DFT-

optimized (PBE/SDD(Fe, Zn), 6-31G(d) (C, H, O)) geometries of the cluster models of 2 

and 4. These calculations were performed with the Molcas 7.8 software package
26

. Scalar 

relativistic effects were included by use of the second order Douglas–Kroll–Hess 

Hamiltonian
27

. The computational cost arising from the two-electron integrals was 

reduced by employing the Cholesky decomposition technique (RICD).
28

 The relativistic 

all-electron ANO-RCC basis sets
29

 were used for all atoms; in particular, the ANO-RCC-

VTZP basis set was used for Fe, for the five first-coordination-sphere O atoms of Fe in 

the MOF fragment, and for the O or OH atoms of the adsorbate. ANO-RCC-VDZP was 

used for the Zn and all other O atoms, and ANO-RCC-MB was used for all C and H 

atoms. No symmetry (point group C1) was used, and all possible spin states were 

considered. The default IPEA shift of 0.25 eV was used in CASPT2, along with an 

imaginary shift of 0.2 eV. 

 

An active space containing 10 electrons in 11 orbitals (10,11) was used for the cluster 

model of 4. An active space containing 5 electrons in 5 orbitals (5,5), which contains the 

five d electrons of Fe(III) in the five 3d orbital was used for the cluster model of 2. The 

sigma bonding orbital of the metal to the –OH ligand is doubly occupied in the inactive 

space, along with the five other Fe–O sigma bonding orbitals. 
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3. Supplemental Tables 

 

Supplementary Table S1 | Rietveld Refinement (10 K) of Fe2(dobdc). Fractional 

atomic coordinates, occupancies, and isotropic displacement parameters obtained from 

Rietveld refinement of structural model of the bare Fe2(dobdc) framework at 10 K, space 

group R-3, a = 26.1826(6) Å, c = 6.8506(2) Å , and V = 4067.1(2) Å
3
.  

 

Atom x y z occ. Uiso*100    

(Å
2
) Fe 0.3815(2) 0.3518(2) 0.1416(5) 1.0 0.4(1) 

O1 0.3293(3) 0.2963(3) 0.369(1) 1.0 0.4(1) 
O2 0.3001(3) 0.2259(3) 0.600(1) 1.0 0.4(1) 
O3 0.3550(3) 0.2737(3) 0.011(1) 1.0 0.4(1) 
C1 0.3189(3) 0.2453(3) 0.4267(9) 1.0 0.51(6) 
C2 0.3278(3) 0.2063(3) 0.2915(8) 1.0 0.51(6) 
C3 0.3441(3) 0.2221(3) 0.0908(8) 1.0 0.51(6) 
C4 0.3490(3) 0.1809(3) -0.030(1) 1.0 0.51(6) 
H 0.3621(5) 0.1922(5) -0.173(2) 1.0 1.8(3) 

0.0180(32)  
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Supplementary Table S2 | Rietveld Refinement (10 K) of Fe2(dobdc)(N2O)0.7. 

Fractional atomic coordinates, occupancies, and isotropic displacement parameters 

obtained from Rietveld refinement of structural model of the 0.35 N2O per Fe
2+

 in the 

Fe2(dobdc) framework at 10 K, space group R-3, a = 26.1660(4) Å, c = 6.8595(2) Å , and 

V = 4067.2(2) Å
3
. 

 

Atom x y z occ. Uiso*100    

(Å
2
) Fe 0.3819(1) 0.3520(2) 0.1437(4) 1.0 0.49(5) 

O1 0.3279(2) 0.2957(2) 0.3676(8) 1.0  0.20(4) 

O2 0.3010(2) 0.2272(2) 0.6019(7) 1.0  0.20(4) 

O3 0.3550(2) 0.2738(2) 0.0084(8) 1.0  0.20(4) 

C1 0.3193(2) 0.2463(2) 0.4292(7) 1.0 0.42(2) 

C2 0.3275(2) 0.2063(2) 0.2887(7) 1.0 0.42(2) 

C3 0.3438(2) 0.2213(2) 0.0924(7) 1.0 0.42(2) 

C4 0.35061(2) 0.1817(2) -0.0272(7) 1.0 0.42(2) 

H 0.3619(4) 0.1930(3)   -0.1712(15) 1.0 1.3(2) 

O11     0.471(1) 0.358(1) 0.272(4) 0.22(1) 1.6(8) 

N12     0.5174(5) 0.3960(4) 0.2071(17) 0.371(7) 2.9(3) 

N13     0.5607(6) 0.4314(6) 0.1533(26) 0.223(6) 1.6(4) 

N11a     0.4718(9) 0.3605(9) 0.2628(32) 0.161(7) 1.1(6) 

O13a    0.562(2) 0.433(2) 0.146(7) 0.16(1) 3(1) 
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Supplementary Table S3 | Rietveld Refinement (10 K) of Fe2(dobdc)(N2O)1.2. 

Fractional atomic coordinates, occupancies, and isotropic displacement parameters 

obtained from Rietveld refinement of structural model of the 0.60 N2O per Fe
2+

 in the 

Fe2(dobdc) framework at 10 K, space group R-3, a = 26.1577(4) Å, c = 6.8671(2) Å, and 

V = 4069.1(2) Å
3
. 

 

Atom x y z occ. Uiso*100    

(Å
2
) Fe 0.3829(1) 0.3523(2) 0.1428(5) 1.0 0.94(5) 

O1 0.3268(2) 0.2945(2) 0.3667(8) 1.0 0.17(4) 

O2 0.3019(2) 0.2274(2) 0.6000(7) 1.0 0.17(4) 

O3 0.3550(2) 0.2733(2) 0.0093(8) 1.0 0.17(4) 

C1 0.3189(2) 0.2452(2) 0.4273(7) 1.0 0.86(2) 

C2 0.3280(2) 0.2059(2) 0.2857(7) 1.0 0.86(2) 

C3 0.3446(2) 0.2211(2) 0.0933(7) 1.0 0.86(2) 

C4 0.3521(2) 0.1833(2) -0.0262(7) 1.0 0.86(2) 

H 0.3602(3) 0.1927(3) -0.170(1) 1.0 1.0(2) 

O11 0.468(1) 0.3533(9) 0.272(3) 0.232(5) 1.5(7) 

N12 0.5145(4) 0.3915(4) 0.211(2) 0.532(7) 7.9(4) 

N13 0.5575(8) 0.4275(8) 0.152(4) 0.232(5) 6.8(7) 

N11a 0.4712(6) 0.3560(6) 0.264(2) 0.310(6) 5.5(5) 

O13a 0.5599(8) 0.4296(8) 0.151(3) 0.310(6) 3.3(6) 
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Supplementary Table S4 | Rietveld Refinement (10 K) of Fe2(dobdc)(N2O)2.5. 

Fractional atomic coordinates, occupancies, and isotropic displacement parameters 

obtained from Rietveld refinement (10 K) of the Fe2(dobdc) dosed with 1.25 N2O per 

Fe
2+

, space group R-3, a = 26.1243(5) Å, c = 6.87522(2) Å, and V =  4063.6(2) Å
3
. 

 

Atom x y z occ. Uiso*100    

(Å
2
) Fe 0.3828(2) 0.3518(2) 0.1479(6) 1.0 0.95(9) 

O1 0.3271(3) 0.2952(3) 0.3619(9) 1.0 0.32(7) 

O2 0.3006(3) 0.2252(3) 0.593(1) 1.0 0.32(7) 

O3 0.3554(3) 0.2736(3) 0.006(1) 1.0 0.32(7) 

C1 0.3194(2) 0.2471(3) 0.4234(9) 1.0 0.81(4) 

C2 0.3267(3) 0.2057(3) 0.2872(8) 1.0 0.81(4) 

C3 0.3457(2) 0.2223(3) 0.0956(9) 1.0 0.81(4) 

C4 0.3507(3) 0.1808(3) -0.0232(9) 1.0 0.81(4) 

H 0.3632(5) 0.1931(4) -0.169(2) 1.0 1.35(3) 

O11 0.4704(7) 0.3515(9) 0.249(4) 0.320(8) 3.7(9) 

N12 0.5176(3) 0.3919(3) 0.213(1) 0.639(9) 5.4(4) 

N13 0.5610(5) 0.4309(7) 0.164(3) 0.320(8) 4.9(6) 

N11a 0.4711(5) 0.3630(7) 0.268(2) 0.308(8) 1.4(4) 

N13a 0.5657(6) 0.4187(16) 0.142(4) 0.308(8) 10.4(8) 

N21 0.1468(8) 0.1587(8) 0.605(3) 0.383(5) 10.0(8) 

N22 0.1620(7) 0.1862(7) 0.462(3) 0.383(5) 8.0(7) 

O23 0.1744(1) 0.2166(9) 0.331(3) 0.383(5) 3.8(7) 

N11aa 0.5090(6) 0.3732(7) 0.333(2) 0.310(5) 2.4(5) 

O11aa 0.559(1) 0.403(1) 0.402(4) 0.310(5) 0.7(6) 

N11ab 0.4619(8) 0.3481(8) 0.285(3) 0.310(5) 3.7(6) 
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Supplementary Table S5 | Rietveld Refinement (100 K) of Fe2(OH)2(dobdc). Space 

group R-3, a = 25.6125(2) Å, c = 6.8036(1) Å, and V = 3865.20(8) Å
3
. This data was 

obtained from 11-BM at the Advanced photon source at Argonne National Laboratory 

using a wavelength of 0.7291 Å. 

  

Atom x y z occ. Uiso*100    

(Å
2
) Fe 0.3893(1) 0.3510(1) 0.1539(3) 1.0 2.95* 

O1 0.3230(3) 0.2972(4) 0.356(1) 1.0 2.3(2) 

O2 0.3009(4) 0.2289(3) 0.594(1) 1.0 2.3(2) 

O3 0.3553(3) 0.2727(4) 0.000(1) 1.0 2.3(2) 

C1 0.3164(8) 0.2467(6) 0.415(2) 1.0 1.1(2) 

C2 0.3260(6) 0.2052(7) 0.288(2) 1.0 1.1(2) 

C3 0.3431(5) 0.2202(7) 0.092(2) 1.0 1.1(2) 

C4 0.3492(6) 0.1795(7) -0.044(2) 1.0 0.9(2) 

OH 0.4524(4) 0.3473(5) 0.294(1) 1.0 8.66* 

 

*Uaniso Fe = [U11,U22,U33,U12,U13,U23] = [4.0(2),1.9(2),1.7(1),0.5(2),0.4(2),0.4(2)]; 

Uaniso Ox = [U11,U22,U33,U12,U13,U23] = [7(1),15(1),8(1),10(1),0.00,0.00]  
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Supplementary Table S6 | Rietveld Refinement (298 K) of the Fe2(OH)2(dobdc). 

Space group R-3, a = 25.6191(2) Å, c = 6.8042(1) Å, and V = 3867.55(9) Å
3
 

 

Atom x y z occ. Uiso*100 (Å
2
) 

Fe   0.3897(1) 0.3512(1)   0.1540(4) 1.0 3.14* 

O1   0.3222(4) 0.2967(4)   0.358(1)  1.0 2.6(2) 

O2   0.3005(4) 0.2295(4)   0.596(1)  1.0 2.6(2) 

O3   0.3553(4) 0.2736(4)  -0.004(2)  1.0 2.6(2) 

C1   0.3167(8) 0.2473(7)   0.416(2)  1.0 1.6(2) 

C2   0.3265(6) 0.2051(7)   0.294(2)  1.0 1.6(2) 

C3   0.3431(6)  0.2219(7)   0.101(2)  1.0 1.6(2) 

C4   0.3488(6)  0.1815(7)  -0.039(2)  1.0 1.6(2) 

Ox   0.4528(5)  0.3489(6)   0.297(1)  1.0 12.2* 

 

*Uaniso Fe = [U11,U22,U33,U12,U13,U23] = [4.4(2),1.8(2),1.5(1),0.3(2),0.5(2),-0.3(2)]; 

Uaniso Ox = [U11,U22,U33,U12,U13,U23] = [8(1),27(2),9(1),14(1),0.00,0.00]  
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Supplementary Table S7 | EXAFS curve fitting parameters for Fe2(dobdc) and 

comparison with bond lengths obtained by PXRD. 

 

Path 
R (Å) 

N σ
2
 (Å

2
) R (%) 

PXRD EXAFS 

Fe–O 2.10a  2.06(1) 5 0.010(2) 1.0 

Fe–C 3.05a   3.07(5) 5 0.003(4) ΔE0 = 3.1 

Fe–Fe 3.00(2)
 

2.96(3) 2 0.010(6)  

Fe–OC 3.23a  3.22(8) 10 0.010(11)  

 

 

Supplementary Table S8 | EXAFS curve fitting parameters for 2 and comparison 

with bond lengths obtained by DFT (periodic PBE+U) and PXRD (100 K data). Note 

that although the PXRD and EXAFS are in good agreement overall, there are 

dissimilarities, especially in the Fe–Oaxial bond lengths for 2. This is because while 

EXAFS can be used to obtain first-shell distances with great accuracy, it is much more 

limited when resolution of different bond lengths is needed, especially when the 

scatterers have both a similar distance and atomic number, as is the case in 2.
30

  

 

Path 
R (Å) 

N σ
2
 (Å

2
) R (%) 

DFT PXRD  EXAFS 

Fe–OH 1.84 1.92(1) 1.85(3) 1 0.009(1) 1.1 

Fe–Oeq 2.02a  
2.04a  2.02(1) 4 0.009(1) ΔE0 = 2.70 

Fe–Oax 2.27 2.20(1) 2.33(4) 1 0.009(1)  

Fe–C 3.01a   
3.03a  2.95(7) 5 0.009(1)  

Fe–Fe 3.23 3.16(1) 3.15(9) 2 0.016(4)  

Fe–O–C 3.19a   
3.21a  3.16(14) 10 0.006(8)  

Bold numbers are fixed values. 

Numbers in parentheses show uncertainty. 

aAveraged values. 
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Supplementary Table S9 | Mössbauer spectral parameters. 

 

Sample δ, mm/s |ΔEQ|, mm/s Γ, mm/s Area 

(%) 

Assignment 

Fe2(OH)2(dobdc) (1) 0.40(2) 0.96(1) 0.34(1) 80(2) Fe
III

–OH 

 0.40(2) 1.80(6) 0.50(1) 13(2) Unknown 

Fe
III 

 1.21(6) 1.77(9) 0.57(15) 7(2) Fe
II
 

      

Fe2(OH)0.6(dobdc) (1') 0.44(2) 0.95(4) 0.41(4) 30(3) Fe
III

–OH 

 1.08(1) 1.98(2) 0.44(3) 70(4) Fe
II 

      

Fe0.1Mg1.9(dobdc) (2) 1.08(1) 2.25(1) 0.31(2) 100 Fe
II 

      

Fe0.1Mg1.9(dobdc) 0.45(1) 1.08(3) 0.51(2) 89(4) Fe
III

–OH 

(after N2O/C2H6 treatment) 1.07(7) 2.24(11) 0.34(12) 11(3) Fe
II 

 

 

Supplementary Table S10 | Unit cell parameters (298 K) of Fe2(dobdc), FexMg2-

x(dobdc), and Mg2(dobdc). The unit cell constants and volumes of Fe0.1Mg1.9(dobdc) 

and Fe0.44Mg1.56(dobdc) are in between that of Fe2(dobdc) and Mg2(dobdc)
31

 and show a 

linear correlation with magnesium content, in agreement with Vegard’s Law for solid 

solutions. 

 

 Fe2(dobdc) Fe0.44Mg1.56(dobdc) Fe0.1Mg1.9(dobdc) Mg2(dobdc) 

a (Å) 26.1603(10) 25.9964(8) 25.9485(9) 25.9111(20) 

c (Å) 6.8657(4) 6.8465(4) 6.8574(4) 6.8687(12) 

V (Å
3
) 4069.1(3) 4007.1(4) 3998.7(3) 3993.7(7) 
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Supplementary Table S11 | Relative energies (kJ/mol)a  and Mulliken atomic spin 

densities on Fe and O1b  for 2 and 4. Full geometry optimizations were performed by 

periodic PBE+U for three possible spin states of each 2 and 4.  

 

Species 2S 
Spin density 

on Fe 

Spin density 

on O1 

Fe–O1 

Distance(Å) 

Relative energy 

(kJ/(mol Fe))a  

2 

1 1.09 0.00 1.81 149.5 

3 3.34 –0.15 1.87 61.7 

5 4.31 0.23 1.84 0.0 

4 

0 0.00 0.00 1.64 113.9 

2 1.51 0.46 1.62 76.7 

4 3.42 0.33 1.64 0.0 
a The lowest-energy spin state for each species has been taken as 0 reference. 

b O1 is the terminal oxygen as shown in Figure S19.  
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Supplementary Table S12 | Relative energies (kJ/mol)a , S, S
2
, and Mulliken spin 

densities on Fe and O1 for 2 and 4 cluster models. Single-point calculations were done 

on the 89- and 90-atom models using PBE/SDD(Fe, Zn), 6-311+G(2df,p)(C, H, 

O)//PBE/SDD(Fe, Zn),6-31G(d)(C, H, O). 

 

Species State  Spin density Relative energy 

(kJ/mol)a   2MS S S
2
 Fe O1 

2 

(cluster model) 

1 0.67 1.12 0.97 0.13 52.1 

3 1.52 3.82 2.88 0.03 32.6 

5 2.50 8.76 4.27 0.34 0.0 

4 

(cluster model) 

0 (open shell) 0.79 1.42 –0.08 0.07 88.4 

2 1.06 2.20 1.57 0.73 54.4 

4 2.01 6.06 3.08 0.60 0.0 

 6 3.01 12.01 3.97 1.16 104.8 
aRelative energy is computed with respect to the most stable spin state. 

 

 

Supplementary Table S13 | Relative energies (kJ/mol)a , S, S
2
, and Mulliken spin 

densities on Fe and O1 for 2 and 4 cluster models. Single-point calculations were done 

on the 89- and 90-atom models using M06/SDD(Fe, Zn), 6-311+G(2df, p)(C, H, 

O)//M06-L/SDD(Fe, Zn),6-31G(d)(C, H, O). 

 

Species State  Spin density Relative energy 

(kJ/mol)a   2MS S S
2
 Fe O1 

2 

(cluster model) 

1 0.85 1.56 1.05 0.04 218.5 

3 1.53 3.87 3.11 –0.13 109.6 

5 2.50 8.76 4.30 0.30 0.0 

4 

(cluster model) 

0 (open shell) 0.99 1.96 1.00 –1.10 210.6 

2 1.24 2.76 2.83 –0.39 136.4 

4 2.05 6.28 3.65 0.31 0.0 

 6 3.00 12.03 4.16 1.15 57.2 
aRelative energy is computed with respect to the most stable spin state. 
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Supplementary Table S14 | Relative energies (kJ/mol)a , S, S
2
, and Mulliken spin 

densities on Fe and O1 for 2 and 4 cluster models. Single-point calculations were done 

on the 89- and 90-atom models using M08-SO/SDD(Fe, Zn),6-311+G(2df,p)(C, H, 

O)//M06-L/SDD(Fe, Zn),6-31G(d)(C, H, O). 

 

Species State Spin density Relative energy 

(kJ/mol)a   2MS S S
2
 Fe O1 

2 

(cluster model) 

1 1.01 2.02 1.02 0.01 115.8 

3 1.51 3.79 2.98 –0.07 82.5 

5 2.50 8.76 4.37 0.33 0.0 

4 

(cluster model) 

0 (open shell) 1.03 2.09 –0.99 1.02 124.2 

2 1.31 3.03 2.78 –0.87 86.8 

4 2.06 6.29 3.73 0.13 0.0 

 6 3.00 12.02 4.28 1.34 55.3 
aRelative energy is computed with respect to the most stable spin state. 

 

 

Supplementary Table S15 | Relative energies (kJ/mol)a , S, S
2
, and Mulliken spin 

densities on Fe and O1 for 2 and 4 cluster models. Single-point calculations were done 

on the 89- and 90-atom models using MPW1B95/SDD(Fe, Zn), 6-311+G(2df, p)(C, H, 

O)//M06-L/SDD(Fe, Zn), 6-31G(d)(C, H, O). 

 

Species State  Spin density Relative energy 

(kJ/mol)a   2MS S S
2
 Fe O1 

2 

(cluster model) 

1 0.60 0.96 1.04 0.06 143.5 

3 1.53 3.88 3.07 –0.13 80.1 

5 2.50 8.76 4.34 0.29 0.0 

4 

(cluster model) 

0 (open shell) 0.80 1.44 0.72 –0.61 141.7 

2 1.24 2.79 2.87 –0.58 96.1 

4 2.06 6.29 3.69 0.14 0.0 

6 3.00 12.02 4.21 1.20 45.3 
a
Relative energy is computed with respect to the most stable spin state. 
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Supplementary Table S16 | Relative energies (kJ/mol)a , S, S
2
, and Mulliken spin 

densities on Fe and O1 for 2 and 4 cluster models. Single-point calculations were done 

on the 89- and 90-atom models using PW6B95/SDD(Fe, Zn), 6-311+G(2df, p)(C, H, 

O)//M06-L/SDD(Fe, Zn), 6-31G(d)(C, H, O). 

 

Species State  Spin density Relative energy 

(kJ/mol)a   2MS S S
2
 Fe O1 

2 

(cluster model) 

1 0.60 0.96 1.03 0.07 121.4 

3 1.53 3.87 3.04 –0.11 69.7 

5 2.50 8.76 4.32 0.30 0.0 

4 

(cluster model) 

0 (open shell) 0.80 1.43 0.64 –0.54 126.8 

2 1.23 2.74 2.79 –0.43 87.4 

4 2.05 6.25 3.61 0.25 0.0 

6 3.00 12.03 4.18 1.17 50.3 
aRelative energy is computed with respect to the most stable spin state. 
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Supplementary Table S17 | Calculated relative energies (kJ/mol) for N2O bound to 

the Fe(II) site of the 88-atom cluster. The relative energies of η
1
-N and η

1
-O 

coordination modes are computed using M06-L and M06 density functionals with the 

def2-TZVP and SDD(Fe, Zn), 6-31G(d)(C, H, O, N) basis sets. The level of optimization 

is opt6. 

 

Functional Binding mode SDD(Fe, Zn), 6-31G(d)(C, H, O, N) def2-TZVP 

M06-L 
η1-O 0.0 0.0 

η
1
-N –4.6 –9.5 

M06 
η1-O 0.0 0.0 

η
1
-N 1.1 –4.5 

 

 

Supplementary Table S18 | State energy splitting of 2 and 4 cluster models 

calculated by CASSCF and CASPT2.  

 

Species 2MS 

Largest 

CASSCF 

configuration 

weight 

Ma  

Relative 

CASSCF 

energy 

(kJ/mol) 

Relative 

CASPT2 

energy 

(kJ/mol) 

2 

(cluster model) 

1 94% 0.102 328.4 294.6 

3 79% 0.309 216.7 145.2 

5 100% 0.000 0.0 0.0 

4 

(cluster model) 

0(open shell) 77% 0.272 210.5 249.4 

2 74% 0.306 139.3 127.6 

4 77% 0.311 0.0 0.0 
aM is a diagnostic used to quantify the extent of multireference character of the system, 

and it is defined to be 
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where )MCDONO(n , SOMOn , and )MCUNO(n  are the most correlated doubly occupied 

natural orbital, a singly occupied natural orbital, and the most correlating unoccupied 

natural orbital, respectively. Additional details of this metric may be found in a work by 

Tishchenko et al.
32
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Supplementary Table S19 | Charge and spin densities of the sextet and quintet 

ground spin states of the cluster models of 2 and 4 from CASSCF calculations. 

 

 2 (cluster model) 4 (cluster model) 

 Fe O1 Fe O1 

CASSCF Mulliken Spin Density 4.79 0.07 3.744 0.173 

CASSCF Mulliken Charge Density 1.95 –0.77 1.765 –0.419 

CASSCF LoProp Charge Density 2.21 –1.09 1.963 –0.559 

 

 

Supplementary Table S20 | Relative energies (kJ/mol)a , S, S
2
, and Mulliken spin 

densities on Fe and O1 for the cluster model of 4 and the cluster model of 4 with 

Zn(II) replacing Mg(II). All calculations were done using M06-L/SDD(Fe, Zn), 6-

31G(d)(C, H, O, Mg)/opt6. 

 

Species State  Spin density Fe–O1 

(Å) 

Relative energy 

(kJ/mol)
a
  2MS S S

2
 Fe O1 

4 

(cluster model 

with Zn(II)) 

0 0.77 1.36 0.27 –0.14 1.62 138.2 

2 1.15 2.48 2.02 0.44 1.61 77.3 

4 2.04 6.22 3.31 0.60 1.64 0.0 

4 

(cluster model 

with Mg(II)) 

0 0.78 1.40 0.26 –0.11 1.62 138.7 

2 1.17 2.55 2.18 0.34 1.60 71.9 

4 2.06 6.29 3.35 0.61 1.64 0.0 
aRelative energy is computed with respect to the most stable spin state. 

 

 

Supplementary Table S21 | Relative energies (kJ/mol)a , S, S
2
, and Mulliken spin 

densities on Fe and O1 for the cluster model of 4 and the cluster model of 4 with 

Zn(II) replacing Mg(II). All calculations were done using M06/SDD(Fe, Zn), 6-

31G(d)(C, H, O, Mg)/opt6. 

 

Species State  Spin density Fe–O1 

(Å) 

Relative energy 

(kJ/mol)
a
  2MS S S

2
 Fe O1 

4 

(cluster model 

with Zn(II)) 

0 0.86 1.60 0.41 –0.47 1.58 213.3 

2 1.27 2.90 2.90 –0.32 1.62 132.1 

4 2.05 6.27 3.54 0.42 1.63 0.0 

4 

(cluster model 

with Mg(II)) 

0 0.91 1.73 –0.60 0.58 1.59 215.6 

2 1.29 2.97 2.91 –0.24 1.62 125.0 

4 2.07 6.38 3.61 0.46 1.64 0.0 
aRelative energy is computed with respect to the most stable spin state. 
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Supplementary Table S22 | Binding energiesa  (kJ/mol) of η
1
-N and η

1
-O 

coordination modes of N2O bound to the iron(II) site of the 88-atom cluster. The 

calculations were done using M06-L and M06 density functionals with SDD(Fe, Zn), 6-

31G(d)(C, H, O, N) basis set. The level of optimization is opt6. 

 

Functional Binding mode Binding energy (kJ/mol) 

M06-L 
η

1
-O 41.4 

η
1
-N 46.1 

M06 
η

1
-O 45.6 

η
1
-N 44.5 

aBinding Energy = E(cluster) + E(N2O) – E(complex) 

 

 

Supplementary Table S23 | Natural bond analysis of η
1
-N and η

1
-O coordination 

modes of N2O bound to the iron(II) site of the 88-atom cluster. 

Binding mode % Back-bonding 

η
1
-O 42% 

η
1
-N 43% 
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4. Supplemental Figures 

 

 
Supplementary Figure S1 | In situ transmission-mode FTIR spectra of Fe2(dobdc) 

demonstrating reversible N2O binding at room temperature. a. FTIR spectra of 

Fe2(dobdc) outgassed at room temperature 2 h (black curve) and activated at 433 K for 18 

h (red curve) and in contact with 40 mbar of N2O at room temperature (blue curve). The 

spectrum of the activated sample clearly shows the disappearance of all features 

associated with methanol, with all other bands unchanged. b. FTIR spectra (background 

subtracted) in the 2280–2160 cm
–1

 spectral range of Fe2(dobdc) in contact with 40 mbar 

of N2O (blue curve) and following progressive desorption at room temperature (light grey 

curves). A clear maximum is seen at 2226 cm
–1

. The dotted blue line represents the 

spectrum of 40 mbar of gaseous N2O in the same spectral range. 
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Supplementary Figure S2 | Rietveld refinement (10 K) of bare Fe2(dobdc). Neutron 

powder diffraction data obtained from bare Fe2(dobdc) at 10 K. The green line, crosses, 

and red line represent the background, experimental, and calculated diffraction patterns, 

respectively. The blue line represents the difference between experimental and calculated 

patterns. 
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Supplementary Figure S3 | Rietveld refinement (10 K) of Fe2(dobdc)(N2O)0.7. 

Neutron powder diffraction data obtained from Fe2(dobdc) loaded with approximately 

0.35 N2O per Fe
2+

. The green line, crosses, and red line represent the background, 

experimental, and calculated diffraction patterns, respectively. The blue line represents 

the difference between experimental and calculated patterns. The data were collected at 

10 K. 
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Supplementary Figure S4 | Rietveld refinement (10 K) of Fe2(dobdc)(N2O)1.2. 

Neutron powder diffraction data obtained from Fe2(dobdc) loaded with approximately 0.6 

N2O per Fe
2+

. The green line, crosses, and red line represent the background, 

experimental, and calculated diffraction patterns, respectively. The blue line represents 

the difference between experimental and calculated patterns.  
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Supplementary Figure S5 | Rietveld refinement (10 K) of Fe2(dobdc)(N2O)2.5. 

Neutron powder diffraction data obtained from Fe2(dobdc) loaded with approximately 

1.25 N2O per Fe
2+

. The green line, crosses, and red line represent the background, 

experimental, and calculated diffraction patterns, respectively. The blue line represents 

the difference between experimental and calculated patterns. The data were collected at 

10 K. 
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Supplementary Figure S6 | Fourier difference map of Fe2(dobdc)(N2O)0.6. Fourier 

Difference Map of data obtained from Fe2(dobdc) loaded with 0.35 N2O per Fe
2+

.  

Yellow globules represent excess scattering density in the channels of the framework that 

result from N2O molecules binding at the Fe
2+

 site. 

 

  



 S-33 

 

Supplementary Figure S7 | Fourier difference map of Fe2(dobdc)(N2O)2.5. Fourier 

Difference Map of data obtained from Fe2(dobdc) loaded with 1.25 N2O per Fe
2+

.  

Yellow globules represent excess scattering density in the channels of the framework that 

result from N2O molecules binding at the Fe
2+

 site. There is a slight rearrangement from 

the site I N2O orientation, denoted site Ia, upon population of the secondary adsorption 

site. 
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Supplementary Figure S8 | In situ transmission-mode FTIR spectra of Fe2(dobdc) 

(green) and Fe2(OH)2(dobdc) (red). A thin film of Fe2(dobdc) was activated at 433 K 

for 18 h (red curve), in contact with 180 mbar of N2O at room temperature (blue curve) 

and heated at 60 °C for 14 hours (green curve). Inset (a): background subtracted spectra 

illustrating the ν(N–N) region and inset (b) magnification of 730–610 cm
–1

 spectral 

range, testifying the formation of Fe2(OH)2(dobdc). 
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Supplementary Figure S9 | CO titration experiments before and after heating 

Fe2(dobdc) in the presence of N2O. a. CO dosed on an activated sample of bare 

Fe2(dobdc). b. CO dosed on a sample that has contacted N2O at room temperature for one 

day, and then overnight at 60 °C shows that the number of open Fe(II) sites has been 

reduced dramatically (less than 10% remaining). 
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Supplementary Figure S10 | ATR-FTIR spectra of Fe2(OH)0.6(dobdc) (black) and 

Fe2(
18

OH)0.6(dobdc) (dotted red). 
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Supplementary Figure S11 | N2 Adsorption isotherm in Fe2(OH)2(dobdc) at 77 K. 
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Supplementary Figure S12 | BET plot of the N2 adsorption isotherm in Fe2(OH)-

2(dobdc) at 77 K. The black line represents a linear best fit of the data points (red 

circles). Inset: parameters for the linear best fit and resulting constants for calculation of 

the BET surface area. 
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Supplementary Figure S13 | Rietveld refinement (100 K) of Fe2(OH)2(dobdc). X-ray 

powder diffraction data obtained from a sample of Fe2(OH)2(dobdc). The green line, 

crosses, and red line represent the background, experimental, and calculated diffraction 

patterns, respectively. The blue line represents the difference between experimental and 

calculated patterns. The data were collected at 100 K. 
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Supplementary Figure S14 | Rietveld refinement (298 K) of Fe2(OH)2(dobdc). X-ray 

powder diffraction data obtained from a sample of Fe2(OH)2(dobdc). The green line, 

crosses, and red line represent the background, experimental, and calculated diffraction 

patterns, respectively. The blue line represents the difference between experimental and 

calculated patterns. The data were collected at 298 K. 
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Supplementary Figure S15 | Unit cell of Fe0.1Mg1.9(dobdc). X-ray powder diffraction 

data obtained from a sample of Fe0.1Mg1.9(dobdc). a = 25.9485(9) Ǻ, c = 6.8574(4) Ǻ, 

and V = 3998.7(3) Ǻ
3
. The crosses and red line represent the experimental and calculated 

diffraction patterns, respectively. The blue line represents the difference between 

experimental and calculated patterns. The data were collected at 298 K. 
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Supplementary Figure S16 | N2 adsorption isotherm in Fe0.1Mg1.9(dobdc) at 77 K. 
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Supplementary Figure S17 | BET plot of the N2 adsorption isotherm in 

Fe0.1Mg1.9(dobdc) at 77 K. The black line represents a linear best fit of the data points 

(green circles). Inset: parameters for the linear best fit and resulting constants for 

calculation of the BET surface area. 
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Supplementary Figure S18 | Powder X-ray diffraction patterns for 

Fe0.1Mg1.9(dobdc) before (green) and after (red) N2O/ethane treatment. 
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Supplementary Figure S19 | Wireframe representation of the cluster model for 4 

(89-atom cluster model). Highlighted in ball and stick, the Fe atom and its first 

coordination sphere and the Zn centers. The 90-atom cluster model for 2 is similar, 

except O1 is replaced with an OH. Color code: orange, Fe; blue, Zn; red, O; grey, C and 

white, H. 
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Supplementary Figure S20 | Comparison of the experimental and theoretical 

structures of the N2O adducts of Fe2(dobdc). a. η
1
-O coordination of the N2O 

molecule. b. η
1
-N coordination of the N2O molecule. All distances are in Å and all angles 

are in degrees. Color code: blue, N; red, O; yellow, Fe (experiment) or purple, Fe 

(theory). 
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