182 research outputs found

    JAK/STAT signaling and human in vitro myogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A population of satellite cells exists in skeletal muscle. These cells are thought to be primarily responsible for postnatal muscle growth and injury-induced muscle regeneration. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling cascade has a crucial role in regulating myogenesis. In rodent skeletal muscle, STAT3 is essential for satellite cell migration and myogenic differentiation, regulating the expression of myogenic factors. The aim of the present study was to investigate and compare the expression profile of JAK/STAT family members, using cultured primary human skeletal muscle cells.</p> <p>Results</p> <p>Near confluent proliferating myoblasts were induced to differentiate for 1, 5 or 10 days. During these developmental stages, members of the JAK/STAT family were examined, along with factors known to regulate myogenesis. We demonstrate the phosphorylation of JAK1 and STAT1 only during myoblast proliferation, while JAK2 and STAT3 phosphorylation increases during differentiation. These increases were correlated with the upregulation of genes associated with muscle maturation and hypertrophy.</p> <p>Conclusions</p> <p>Taken together, these results provide insight into JAK/STAT signaling in human skeletal muscle development, and confirm recent observations in rodents.</p

    Finding the Integrated Care Evidence Base in PubMed and Beyond: A Bibliometric Study of the Challenges

    Get PDF
    Introduction: Integrated care research evidence should be optimally visible and accessible to stakeholders. This study examines the contribution of specific databases to the discovery of integrated care evidence, and tests the usefulness of Medical Subject Heading (MeSH) indexing of this literature within PubMed. Methods: We used bibliometric methods to analyse the integrated care literature indexed within six databases between 2007 and 2016. An international expert advisory group assessed the relevance of citations randomly retrieved from PubMed using MeSH term ‘Delivery of Health Care, Integrated’. Results: Integrated care evidence is diffuse, spread across many journals. Between 2007 and 2016, integrated care citations grew substantially, with the rate of increase highest in Embase. PubMed contributes the largest proportion of unique citations (citations not included in any of the other databases analysed), followed by Embase, PsycINFO and CINAHL. On average, expert reviewers rated 42.5% of citations retrieved by MeSH term ‘Delivery of Health Care, Integrated’ as relevant to integrated care. When these citations were dual reviewed, inter-rater agreement was low. Conclusion: MeSH terms alone are insufficient to retrieve integrated care content from PubMed. Embase and CINAHL contain unique content not found in PubMed that should not be overlooked. A validated search filter is proposed to simplify the process of finding integrated care research for clinicians, managers and decision-makers

    Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial–mesenchymal transition in ovarian carcinomas

    Get PDF
    Epidermal growth factor receptor (EGFR) is overexpressed in ovarian carcinomas, with direct or indirect activation of EGFR able to trigger tumour growth. We demonstrate significant activation of both signal transducer and activator of transcription (STAT)3 and its upstream activator Janus kinase (JAK)2, in high-grade ovarian carcinomas compared with normal ovaries and benign tumours. The association between STAT3 activation and migratory phenotype of ovarian cancer cells was investigated by EGF-induced epithelial–mesenchymal transition (EMT) in OVCA 433 and SKOV3 ovarian cancer cell lines. Ligand activation of EGFR induced a fibroblast-like morphology and migratory phenotype, consistent with the upregulation of mesenchyme-associated N-cadherin, vimentin and nuclear translocation of β-catenin. This occurred concomitantly with activation of the downstream JAK2/STAT3 pathway. Both cell lines expressed interleukin-6 receptor (IL-6R), and treatment with EGF within 1 h resulted in a several-fold enhancement of mRNA expression of IL-6. Consistent with that, EGF treatment of both OVCA 433 and SKOV3 cell lines resulted in enhanced IL-6 production in the serum-free medium. Exogenous addition of IL-6 to OVCA 433 cells stimulated STAT3 activation and enhanced migration. Blocking antibodies against IL-6R inhibited IL-6 production and EGF- and IL-6-induced migration. Specific inhibition of STAT3 activation by JAK2-specific inhibitor AG490 blocked STAT3 phosphorylation, cell motility, induction of N-cadherin and vimentin expression and IL6 production. These data suggest that the activated status of STAT3 in high-grade ovarian carcinomas may occur directly through activation of EGFR or IL-6R or indirectly through induction of IL-6R signalling. Such activation of STAT3 suggests a rationale for a combination of anti-STAT3 and EGFR/IL-6R therapy to suppress the peritoneal spread of ovarian cancer

    Remote Effects of Hippocampal Sclerosis on Effective Connectivity during Working Memory Encoding: A Case of Connectional Diaschisis?

    Get PDF
    Accumulating evidence suggests a role for the medial temporal lobe (MTL) in working memory (WM). However, little is known concerning its functional interactions with other cortical regions in the distributed neural network subserving WM. To reveal these, we availed of subjects with MTL damage and characterized changes in effective connectivity while subjects engaged in WM task. Specifically, we compared dynamic causal models, extracted from magnetoencephalographic recordings during verbal WM encoding, in temporal lobe epilepsy patients (with left hippocampal sclerosis) and controls. Bayesian model comparison indicated that the best model (across subjects) evidenced bilateral, forward, and backward connections, coupling inferior temporal cortex (ITC), inferior frontal cortex (IFC), and MTL. MTL damage weakened backward connections from left MTL to left ITC, a decrease accompanied by strengthening of (bidirectional) connections between IFC and MTL in the contralesional hemisphere. These findings provide novel evidence concerning functional interactions between nodes of this fundamental cognitive network and sheds light on how these interactions are modified as a result of focal damage to MTL. The findings highlight that a reduced (top-down) influence of the MTL on ipsilateral language regions is accompanied by enhanced reciprocal coupling in the undamaged hemisphere providing a first demonstration of “connectional diaschisis.

    Remote Effects of Hippocampal Sclerosis on Effective Connectivity during Working Memory Encoding: A Case of Connectional Diaschisis?

    Get PDF
    Accumulating evidence suggests a role for the medial temporal lobe (MTL) in working memory (WM). However, little is known concerning its functional interactions with other cortical regions in the distributed neural network subserving WM. To reveal these, we availed of subjects with MTL damage and characterized changes in effective connectivity while subjects engaged in WM task. Specifically, we compared dynamic causal models, extracted from magnetoencephalographic recordings during verbal WM encoding, in temporal lobe epilepsy patients (with left hippocampal sclerosis) and controls. Bayesian model comparison indicated that the best model (across subjects) evidenced bilateral, forward, and backward connections, coupling inferior temporal cortex (ITC), inferior frontal cortex (IFC), and MTL. MTL damage weakened backward connections from left MTL to left ITC, a decrease accompanied by strengthening of (bidirectional) connections between IFC and MTL in the contralesional hemisphere. These findings provide novel evidence concerning functional interactions between nodes of this fundamental cognitive network and sheds light on how these interactions are modified as a result of focal damage to MTL. The findings highlight that a reduced (top-down) influence of the MTL on ipsilateral language regions is accompanied by enhanced reciprocal coupling in the undamaged hemisphere providing a first demonstration of “connectional diaschisis.

    The Cognitive Impact of the ANK3 Risk Variant for Bipolar Disorder: Initial Evidence of Selectivity to Signal Detection during Sustained Attention

    Get PDF
    BACKGROUND: Abnormalities in cognition have been reported in patients with Bipolar Disorder (BD) and their first degree relatives, suggesting that susceptibility genes for BD may impact on cognitive processes. Recent genome-wide genetic studies have reported a strong association with BD in a single nucleotide polymorphism (SNP) (rs10994336) within ANK3, which codes for Ankyrin 3. This protein is involved in facilitating the propagation of action potentials by regulating the assembly of sodium gated ion channels. Since ANK3 influences the efficiency of transmission of neuronal impulses, allelic variation in this gene may have widespread cognitive effects. Preclinical data suggest that this may principally apply to sequential signal detection, a core process of sustained attention. METHODOLOGY/PRINCIPAL FINDINGS: One hundred and eighty-nine individuals of white British descent were genotyped for the ANK3 rs10994336 polymorphism and received diagnostic interviews and comprehensive neurocognitive assessment of their general intellectual ability, memory, decision making, response inhibition and sustained attention. Participants comprised euthymic BD patients (n = 47), their unaffected first-degree relatives (n = 75) and healthy controls (n = 67). The risk allele T was associated with reduced sensitivity in target detection (p = 0.0004) and increased errors of commission (p = 0.0018) during sustained attention regardless of diagnosis. We found no effect of the ANK3 genotype on general intellectual ability, memory, decision making and response inhibition. CONCLUSIONS/SIGNIFICANCE: Our results suggest that allelic variation in ANK3 impacts cognitive processes associated with signal detection and this mechanism may relate to risk for BD. However, our results require independent replication and confirmation that ANK3 (rs10994336) is a direct functional variant

    Deficient prefrontal attentional control in late-life generalized anxiety disorder: an fMRI investigation

    Get PDF
    Younger adults with anxiety disorders are known to show an attentional bias toward negative information. Little is known regarding the role of biased attention in anxious older adults, and even less is known about the neural substrates of any such bias. Functional magnetic resonance imaging (fMRI) was used to assess the mechanisms of attentional bias in late life by contrasting predictions of a top-down model emphasizing deficient prefrontal cortex (PFC) control and a bottom-up model emphasizing amygdalar hyperreactivity. In all, 16 older generalized anxiety disorder (GAD) patients (mean age=66 years) and 12 non-anxious controls (NACs; mean age=67 years) completed the emotional Stroop task to assess selective attention to negative words. Task-related fMRI data were concurrently acquired. Consistent with hypotheses, GAD participants were slower to identify the color of negative words relative to neutral, whereas NACs showed the opposite bias, responding more quickly to negative words. During negative words (in comparison with neutral), the NAC group showed PFC activations, coupled with deactivation of task-irrelevant emotional processing regions such as the amygdala and hippocampus. By contrast, GAD participants showed PFC decreases during negative words and no differences in amygdalar activity across word types. Across all participants, greater attentional bias toward negative words was correlated with decreased PFC recruitment. A significant positive correlation between attentional bias and amygdala activation was also present, but this relationship was mediated by PFC activity. These results are consistent with reduced prefrontal attentional control in late-life GAD. Strategies to enhance top-down attentional control may be particularly relevant in late-life GAD treatment

    Everyday episodic memory in amnestic mild cognitive impairment: a preliminary investigation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Decline in episodic memory is one of the hallmark features of Alzheimer's disease (AD) and is also a defining feature of amnestic Mild Cognitive Impairment (MCI), which is posited as a potential prodrome of AD. While deficits in episodic memory are well documented in MCI, the nature of this impairment remains relatively under-researched, particularly for those domains with direct relevance and meaning for the patient's daily life. In order to fully explore the impact of disruption to the episodic memory system on everyday memory in MCI, we examined participants' episodic memory capacity using a battery of experimental tasks with real-world relevance. We investigated episodic acquisition and delayed recall (story-memory), associative memory (face-name pairings), spatial memory (route learning and recall), and memory for everyday mundane events in 16 amnestic MCI and 18 control participants. Furthermore, we followed MCI participants longitudinally to gain preliminary evidence regarding the possible predictive efficacy of these real-world episodic memory tasks for subsequent conversion to AD.</p> <p>Results</p> <p>The most discriminating tests at baseline were measures of acquisition, delayed recall, and associative memory, followed by everyday memory, and spatial memory tasks, with MCI patients scoring significantly lower than controls. At follow-up (mean time elapsed: 22.4 months), 6 MCI cases had progressed to clinically probable AD. Exploratory logistic regression analyses revealed that delayed associative memory performance at baseline was a potential predictor of subsequent conversion to AD.</p> <p>Conclusions</p> <p>As a preliminary study, our findings suggest that simple associative memory paradigms with real-world relevance represent an important line of enquiry in future longitudinal studies charting MCI progression over time.</p

    Eccentric Exercise Activates Novel Transcriptional Regulation of Hypertrophic Signaling Pathways Not Affected by Hormone Changes

    Get PDF
    Unaccustomed eccentric exercise damages skeletal muscle tissue, activating mechanisms of recovery and remodeling that may be influenced by the female sex hormone 17β-estradiol (E2). Using high density oligonucleotide based microarrays, we screened for differences in mRNA expression caused by E2 and eccentric exercise. After random assignment to 8 days of either placebo (CON) or E2 (EXP), eighteen men performed 150 single-leg eccentric contractions. Muscle biopsies were collected at baseline (BL), following supplementation (PS), +3 hours (3H) and +48 hours (48H) after exercise. Serum E2 concentrations increased significantly with supplementation (P<0.001) but did not affect microarray results. Exercise led to early transcriptional changes in striated muscle activator of Rho signaling (STARS), Rho family GTPase 3 (RND3), mitogen activated protein kinase (MAPK) regulation and the downstream transcription factor FOS. Targeted RT-PCR analysis identified concurrent induction of negative regulators of calcineurin signaling RCAN (P<0.001) and HMOX1 (P = 0.009). Protein contents were elevated for RND3 at 3H (P = 0.02) and FOS at 48H (P<0.05). These findings indicate that early RhoA and NFAT signaling and regulation are altered following exercise for muscle remodeling and repair, but are not affected by E2
    corecore