55 research outputs found

    Megahertz pulse trains enable multi-hit serial femtosecond crystallography experiments at X-ray free electron lasers

    Get PDF
    The European X-ray Free Electron Laser (XFEL) and Linac Coherent Light Source (LCLS) II are extremely intense sources of X-rays capable of generating Serial Femtosecond Crystallography (SFX) data at megahertz (MHz) repetition rates. Previous work has shown that it is possible to use consecutive X-ray pulses to collect diffraction patterns from individual crystals. Here, we exploit the MHz pulse structure of the European XFEL to obtain two complete datasets from the same lysozyme crystal, first hit and the second hit, before it exits the beam. The two datasets, separated by <1 µs, yield up to 2.1 Å resolution structures. Comparisons between the two structures reveal no indications of radiation damage or significant changes within the active site, consistent with the calculated dose estimates. This demonstrates MHz SFX can be used as a tool for tracking sub-microsecond structural changes in individual single crystals, a technique we refer to as multi-hit SFX

    Framing smallholder inclusion in global value chains – case studies from India and West Africa

    No full text
    A resurrected interest in agriculture has brought in its wake growing interest in smallholders in the global South by scholars, companies, governments and development agencies alike. While non-governmental organisations and development agencies see the potential to reduce poverty, companies look upon smallholder agriculture as a widely untapped resource for the sourcing of crops and as a sales market for agricultural inputs. While the important role of large corporate buyers of agricultural produce as lead firms in value chains is often discussed and emphasised, the power of providers of technology and agricultural inputs is being rather neglected. In this paper, we analyse two case studies of technology and input providers in agricultural value chains and their role in smallholder inclusion with the aim of finding out how such companies impact the governance of the value chains. To do so we combine insights from the value chain literature with the concept of framing/overflowing

    3D Micromachined Polyimide Mixing Devices for in Situ X-ray Imaging of Solution-Based Block Copolymer Phase Transitions

    No full text
    Advances in modern interface- and material sciences often rely on the understanding of a system’s structure–function relationship. Designing reproducible experiments that yield in situ time-resolved structural information at fast time scales is therefore of great interest, e.g., for better understanding the early stages of self-assembly or other phase transitions. However, it can be challenging to accurately control experimental conditions, especially when samples are only available in small amounts, prone to agglomeration, or if X-ray compatibility is required. We address these challenges by presenting a microfluidic chip for triggering dynamics via rapid diffusive mixing for in situ time-resolved X-ray investigations. This polyimide/Kapton-only-based device can be used to study the structural dynamics and phase transitions of a wide range of colloidal and soft matter samples down to millisecond time scales. The novel multiangle laser ablation three-dimensional (3D) microstructuring approach combines, for the first time, the highly desirable characteristics of Kapton (high X-ray stability with low background, organic solvent compatibility) with a 3D flow-focusing geometry that minimizes mixing dispersion and wall agglomeration. As a model system, to demonstrate the performance of these 3D Kapton microfluidic devices, we selected the non-solvent-induced self-assembly of biocompatible and amphiphilic diblock copolymers. We then followed their structural evolution in situ at millisecond time scales using on-the-chip time-resolved small-angle X-ray scattering under continuous-flow conditions. Combined with complementary results from 3D finite-element method computational fluid dynamics simulations, we find that the nonsolvent mixing is mostly complete within a few tens of milliseconds, which triggers initial spherical micelle formation, while structural transitions into micelle lattices and their deswelling only occur on the hundreds of milliseconds to second time scale. These results could have an important implication for the design and formulation of amphiphilic polymer nanoparticles for industrial applications and their use as drug-delivery systems in medicine

    Anisotropic particles align perpendicular to the flow direction in narrow microchannels

    No full text
    The flow orientation of anisotropic particles through narrow channels is of importance in many fields, ranging from the spinning and molding of fibers to the flow of cells and proteins through thin capillaries. It is commonly assumed that anisotropic particles align parallel to the flow direction. When flowing through narrowed channel sections, one expects the increased flow rate to improve the parallel alignment. Here, we show by microfocus synchrotron X-ray scattering and polarized optical microscopy that anisotropic colloidal particles align perpendicular to the flow direction after passing a narrow channel section. We find this to be a general behavior of anisotropic colloids, which is also observed for disk-like particles. This perpendicular particle alignment is stable, extending downstream throughout the remaining part of the channel. We show by microparticle image velocimetry that the particle reorientation in the expansion zone after a narrow channel section occurs in a region with considerable extensional flow. This extensional flow is promoted by shear thinning, a typical property of complex fluids. Our discovery has important consequences when considering the flow orientation of polymers, micelles, fibers, proteins, or cells through narrow channels, pipes, or capillary sections. An immediate consequence for the production of fibers is the necessity for realignment by extension in the flow direction. For fibrous proteins, reorientation and stable plug flow are likely mechanisms for protein coagulation

    Broadband Group Velocity Anomaly in Transmission through a Photonic Crystal Slab

    Get PDF
    We have observed an anomalous group velocity effect for transmission perpendicular to a photonic crystal slab. This is a surprisingly broadband phenomenon, with ΔΩ/Ω \u3e 50%. Our results are consistent with FDTD simulations
    • …
    corecore