2,060 research outputs found
A non-linear resonance model for the black hole and neutron star QPOs: theory supported by observations
Kilohertz Quasi-Periodic Oscillations (QPOs) have been detected in many
accreting X-ray binaries. It has been suggested that the highest QPO
frequencies observed in the modulation of the X-ray flux reflect a non-linear
resonance between two modes of accreting disk oscillation. This hypothesis
implies certain very general predictions, several of which have been borne out
by observations. Some of these follow from properties of non-linear
oscillators, while the others are specific to oscillations of fluid in strong
gravity. A 3:2 resonant ratio of frequencies can be clearly recognized in the
black-hole as well as in the neutron-star QPO data.Comment: 8 pages, 8 figures, to appear in Proceedings of the Albert Einstein
Century International Conferenc
The Electromagnetic Self-Energy Contribution to M_p - M_n and the Isovector Nucleon Magnetic Polarizability
We update the determination of the isovector nucleon electromagnetic
self-energy, valid to leading order in QED. A technical oversight in the
literature concerning the elastic contribution to Cottingham's formula is
corrected and modern knowledge of the structure functions is used to precisely
determine the inelastic contribution. We find \delta M_{p-n}^\gamma =
1.30(03)(47) MeV. The largest uncertainty arises from a subtraction term
required in the dispersive analysis, which can be related to the isovector
magnetic polarizability. With plausible model assumptions, we can combine our
calculation with additional input from lattice QCD to constrain this
polarizability as: \beta_{p-n} = -0.87(85) x 10^{-4} fm^3.Comment: 5 pages, version accepted for publication in PR
Polynomial loss of memory for maps of the interval with a neutral fixed point
We give an example of a sequential dynamical system consisting of
intermittent-type maps which exhibits loss of memory with a polynomial rate of
decay. A uniform bound holds for the upper rate of memory loss. The maps may be
chosen in any sequence, and the bound holds for all compositions.Comment: 16 page
Manipulation of Light with Magneto-optic Stripe Domain Films
Magnetic diffraction grating materials, being developed to provide a simple means of deflecting light in a two dimensional, solid state fashion are discussed. The most promising material, for several applications, appears to be bismuth substituted iron garnet films in epitaxial form. Calculations indicate that deflection efficiency greater than 60% is possible in the near infrared region of the spectrum. Within the field of view of the deflector, measurements predict that 105 resolvable spots can be expected. Applications include: (1) general purpose deflection of free laser light, (2) image processing of extended sources such as transparencies, (3) programmable lensing, and (4) fiber optic matrix switching
High Statistics Analysis using Anisotropic Clover Lattices: (IV) Volume Dependence of Light Hadron Masses
The volume dependence of the octet baryon masses and relations among them are
explored with Lattice QCD. Calculations are performed with n_f=2+1 clover
fermion discretization in four lattice volumes, with spatial extent L ~ 2.0,
2.5, 3.0 and 3.9 fm, with an anisotropic lattice spacing of b_s ~ 0.123 fm in
the spatial direction, and b_t = b_s/3.5 in the time direction, and at a pion
mass of m_pi ~ 390 MeV. The typical precision of the ground-state baryon mass
determination is ~0.2%, enabling a precise exploration of the volume dependence
of the masses, the Gell-Mann--Okubo mass relation, and of other mass
combinations. A comparison of the volume dependence with the predictions of
heavy baryon chiral perturbation theory is performed in both the SU(2)_L X
SU(2)_R and SU(3)_L X SU(3)_R expansions. Predictions of the three-flavor
expansion for the hadron masses are found to describe the observed volume
dependences reasonably well. Further, the Delta-N-pi axial coupling constant is
extracted from the volume dependence of the nucleon mass in the two-flavor
expansion, with only small modifications in the three-flavor expansion from the
inclusion of kaons and etas. At a given value of m_pi L, the finite-volume
contributions to the nucleon mass are predicted to be significantly smaller at
m_pi ~ 140 MeV than at m_pi ~ 390 MeV due to a coefficient that scales as ~
m_pi^3. This is relevant for the design of future ensembles of lattice
gauge-field configurations. Finally, the volume dependence of the pion and kaon
masses are analyzed with two-flavor and three-flavor chiral perturbation
theory.Comment: 34 pages, 45 figure
On general relativistic uniformly rotating white dwarfs
The properties of uniformly rotating white dwarfs (RWDs) are analyzed within
the framework of general relativity. Hartle's formalism is applied to construct
the internal and external solutions to the Einstein equations. The WD matter is
described by the relativistic Feynman-Metropolis-Teller equation of state which
generalizes the Salpeter's one by taking into account the finite size of the
nuclei, the Coulomb interactions as well as electroweak equilibrium in a
self-consistent relativistic fashion. The mass , radius , angular
momentum , eccentricity , and quadrupole moment of RWDs are
calculated as a function of the central density and rotation angular
velocity . We construct the region of stability of RWDs (- plane)
taking into account the mass-shedding limit, inverse -decay instability,
and the boundary established by the turning-points of constant sequences
which separates stable from secularly unstable configurations. We found the
minimum rotation periods , 0.5, 0.7 and 2.2 seconds and maximum
masses , 1.474, 1.467, 1.202 for He, C,
O, and Fe WDs respectively. By using the turning-point method we
found that RWDs can indeed be axisymmetrically unstable and we give the range
of WD parameters where it occurs. We also construct constant rest-mass
evolution tracks of RWDs at fixed chemical composition and show that, by
loosing angular momentum, sub-Chandrasekhar RWDs (mass smaller than maximum
static one) can experience both spin-up and spin-down epochs depending on their
initial mass and rotation period while, super-Chandrasekhar RWDs (mass larger
than maximum static one), only spin-up.Comment: The Astrophysical Journal; in pres
Black hole spin inferred from 3:2 epicyclic resonance model of high-frequency quasi-periodic oscillations
Estimations of black hole spin in the three Galactic microquasars GRS
1915+105, GRO J1655-40, and XTE J1550-564 have been carried out based on
spectral and timing X-ray measurements and various theoretical concepts. Among
others, a non-linear resonance between axisymmetric epicyclic oscillation modes
of an accretion disc around a Kerr black hole has been considered as a model
for the observed high-frequency quasi-periodic oscillations (HF QPOs).
Estimates of spin predicted by this model have been derived based on the
geodesic approximation of the accreted fluid motion. Here we assume accretion
flow described by the model of a pressure-supported torus and carry out related
corrections to the mass-spin estimates. We find that for dimensionless black
hole spin a<0.9, the resonant eigenfrequencies are very close to those
calculated for the geodesic motion. Their values slightly grow with increasing
torus thickness. These findings agree well with results of a previous study
carried out in the pseudo-Newtonian approximation. The situation becomes
different for a>0.9, in which case the resonant eigenfrequencies rapidly
decrease as the torus thickness increases. We conclude that the assumed
non-geodesic effects shift the lower limit of the spin, implied for the three
microquasars by the epicyclic model and independently measured masses, from
a~0.7 to a~0.6. Their consideration furthermore confirms compatibility of the
model with the rapid spin of GRS 1915+105 and provides highly testable
predictions of the QPO frequencies. Individual sources with a moderate spin
(a<0.9) should exhibit a smaller spread of the measured 3:2 QPO frequencies
than sources with a near-extreme spin (a~1). This should be further examined
using the large amount of high-resolution data expected to become available
with the next generation of X-ray instruments, such as the proposed Large
Observatory for X-ray Timing (LOFT).Comment: 6 pages, 4 figures, accepted by Astronomy & Astrophysic
- …
