327 research outputs found
Preparation of Poly(vinyl alcohol) Based Composites Filled with Biocompatible Nanoparticulate Silver Containing Fillers for Highly Efficient Bactericidal Materials
Polymer composites based on poly(vinyl alcohol) filled with silver nanoparticles containing biocompatible
fillers, such as silica and hydroxyapatite, have been prepared and tested for potential antimicrobial application.
An effect of silver content on the properties of prepared polymer composites was evaluated. The
results show that defined bactericidal activity of the elaborated materials was observed silver nanoparticles
concentration of 61 ppm.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3542
Two dimensional symmetric and antisymmetric generalizations of sine functions
Properties of 2-dimensional generalizations of sine functions that are
symmetric or antisymmetric with respect to permutation of their two variables
are described. It is shown that the functions are orthogonal when integrated
over a finite region of the real Euclidean space, and that they are
discretely orthogonal when summed up over a lattice of any density in .
Decomposability of the products of functions into their sums is shown by
explicitly decomposing products of all types. The formalism is set up for
Fourier-like expansions of digital data over 2-dimensional lattices in .
Continuous interpolation of digital data is studied.Comment: 12 pages, 5 figure
Three-dimensional Models of Core-collapse Supernovae From Low-mass Progenitors With Implications for Crab
We present 3D full-sphere supernova simulations of non-rotating low-mass (~9
Msun) progenitors, covering the entire evolution from core collapse through
bounce and shock revival, through shock breakout from the stellar surface,
until fallback is completed several days later. We obtain low-energy explosions
[~(0.5-1.0)x 10^{50} erg] of iron-core progenitors at the low-mass end of the
core-collapse supernova (LMCCSN) domain and compare to a super-AGB (sAGB)
progenitor with an oxygen-neon-magnesium core that collapses and explodes as
electron-capture supernova (ECSN). The onset of the explosion in the LMCCSN
models is modelled self-consistently using the Vertex-Prometheus code, whereas
the ECSN explosion is modelled using parametric neutrino transport in the
Prometheus-HOTB code, choosing different explosion energies in the range of
previous self-consistent models. The sAGB and LMCCSN progenitors that share
structural similarities have almost spherical explosions with little metal
mixing into the hydrogen envelope. A LMCCSN with less 2nd dredge-up results in
a highly asymmetric explosion. It shows efficient mixing and dramatic shock
deceleration in the extended hydrogen envelope. Both properties allow fast
nickel plumes to catch up with the shock, leading to extreme shock deformation
and aspherical shock breakout. Fallback masses of <~5x10^{-3} Msun have no
significant effects on the neutron star (NS) masses and kicks. The anisotropic
fallback carries considerable angular momentum, however, and determines the
spin of the newly-born NS. The LMCCSNe model with less 2nd dredge-up results in
a hydrodynamic and neutrino-induced NS kick of >40 km/s and a NS spin period of
~30 ms, both not largely different from those of the Crab pulsar at birth.Comment: 47 pages, 27 figures, 6 tables; minor revisions, accepted by MNRA
Fragmentation cross sections of O-16 between 0.9 and 200 GeV/nucleon
Inclusive cross sections for high energy interactions at 0.9, 2.3, 3.6, and 13.5 GeV/nucleon of O-16 with C, CR-39 (C12H18O7), CH2, Al, Cu, Ag, and Pb targets were measured. The total charge-changing cross sections and partial charge-changing cross sections for the production of fragments with charge Z = 6 and Z = 7 are compared to previous experiments at 60 and 200 GeV/nucleon. The contributions of Coulomb dissociation to the total cross sections are calculated. Using factorization rules the partial electromagnetic cross sections are separated from the nuclear components. Energy dependence of both components are investigated and discussed
Three-dimensional models of core-collapse supernovae from low-mass progenitors with implications for Crab
We present 3D full-sphere supernova simulations of non-rotating low-mass (∼9 M_⊙) progenitors, covering the entire evolution from core collapse through bounce and shock revival, through shock breakout from the stellar surface, until fallback is completed several days later. We obtain low-energy explosions (∼0.5–1.0 × 10⁵⁰ erg) of iron-core progenitors at the low-mass end of the core-collapse supernova (LMCCSN) domain and compare to a super-AGB (sAGB) progenitor with an oxygen–neon–magnesium core that collapses and explodes as electron-capture supernova (ECSN). The onset of the explosion in the LMCCSN models is modelled self-consistently using the VERTEX-PROMETHEUS code, whereas the ECSN explosion is modelled using parametric neutrino transport in the PROMETHEUS-HOTB code, choosing different explosion energies in the range of previous self-consistent models. The sAGB and LMCCSN progenitors that share structural similarities have almost spherical explosions with little metal mixing into the hydrogen envelope. A LMCCSN with less second dredge-up results in a highly asymmetric explosion. It shows efficient mixing and dramatic shock deceleration in the extended hydrogen envelope. Both properties allow fast nickel plumes to catch up with the shock, leading to extreme shock deformation and aspherical shock breakout. Fallback masses of ≲ 5×10⁻³ M_⊙ have no significant effects on the neutron star (NS) masses and kicks. The anisotropic fallback carries considerable angular momentum, however, and determines the spin of the newly born NS. The LMCCSN model with less second dredge-up results in a hydrodynamic and neutrino-induced NS kick of >40 km s⁻¹ and a NS spin period of ∼30 ms, both not largely different from those of the Crab pulsar at birth
Spectra and Light Curves of GRB Afterglows
We performed accurate numerical calculations of angle-, time-, and
frequency-dependent radiative transfer for the relativistic motion of matter in
gamma-ray burst (GRB) models. Our technique for solving the transfer equation,
which is based on the method of characteristics, can be applied to the motion
of matter with a Lorentz factor up to 1000. The effect of synchrotron
self-absorption is taken into account. We computed the spectra and light curves
from electrons with a power-law energy distribution in an expanding
relativistic shock and compare them with available analytic estimates. The
behavior of the optical afterglows from GRB 990510 and GRB 000301c is discussed
qualitatively.Comment: 8 pages, 7 figure
Observations of SN 2017ein Reveal Shock Breakout Emission and A Massive Progenitor Star for a Type Ic Supernova
We present optical and ultraviolet observations of nearby type Ic supernova
SN 2017ein as well as detailed analysis of its progenitor properties from both
the early-time observations and the prediscovery Hubble Space Telescope (HST)
images. The optical light curves started from within one day to 275 days
after explosion, and optical spectra range from 2 days to 90 days
after explosion. Compared to other normal SNe Ic like SN 2007gr and SN 2013ge,
\mbox{SN 2017ein} seems to have more prominent C{\footnotesize II} absorption
and higher expansion velocities in early phases, suggestive of relatively lower
ejecta mass. The earliest photometry obtained for \mbox{SN 2017ein} show
indications of shock cooling. The best-fit obtained by including a shock
cooling component gives an estimate of the envelope mass as 0.02
M and stellar radius as 84 R. Examining the
pre-explosion images taken with the HST WFPC2, we find that the SN position
coincides with a luminous and blue point-like source, with an
extinction-corrected absolute magnitude of M8.2 mag and
M7.7 mag.Comparisons of the observations to the theoretical models
indicate that the counterpart source was either a single WR star or a binary
with whose members had high initial masses, or a young compact star cluster. To
further distinguish between different scenarios requires revisiting the site of
the progenitor with HST after the SN fades away.Comment: 28 pages, 19 figures; accepted for publication in The Astrophysical
Journa
Fast evolving pair-instability supernova models: evolution, explosion, light curves
With an increasing number of superluminous supernovae (SLSNe) discovered, the question of their origin remains open and causes heated debates in the supernova community. Currently, there are three proposed mechanisms for SLSNe: (1) pair-instability supernovae (PISNe), (2) magnetar-driven supernovae and (3) models in which the supernova ejecta interacts with a circumstellar material ejected before the explosion. Based on current observations of SLSNe, the PISN origin has been disfavoured for a number of reasons. Many PISN models provide overly broad light curves and too reddened spectra, because of massive ejecta and a high amount of nickel. In the current study, we re-examine PISN properties using progenitor models computed with the GENEC code. We calculate supernova explosions with FLASH and light-curve evolution with the radiation hydrodynamics code STELLA. We find that high-mass models (200 and 250 M⊙) at relatively high metallicity (Z = 0.001) do not retain hydrogen in the outer layers and produce relatively fast evolving PISNe Type I and might be suitable to explain some SLSNe. We also investigate uncertainties in light-curve modelling due to codes, opacities, the nickel-bubble effect and progenitor structure and composition
- …