320 research outputs found

    Molecular Dynamics Simulation Study of Nonconcatenated Ring Polymers in a Melt: I. Statics

    Full text link
    Molecular dynamics simulations were conducted to investigate the structural properties of melts of nonconcatenated ring polymers and compared to melts of linear polymers. The longest rings were composed of N=1600 monomers per chain which corresponds to roughly 57 entanglement lengths for comparable linear polymers. For the rings, the radius of gyration squared was found to scale as N to the 4/5 power for an intermediate regime and N to the 2/3 power for the larger rings indicating an overall conformation of a crumpled globule. However, almost all beads of the rings are "surface beads" interacting with beads of other rings, a result also in agreement with a primitive path analysis performed in the following paper (DOI: 10.1063/1.3587138). Details of the internal conformational properties of the ring and linear polymers as well as their packing are analyzed and compared to current theoretical models.Comment: 15 pages, 14 figure

    Degradation and healing in a generalized neo-Hookean solid due to infusion of a fluid

    Full text link
    The mechanical response and load bearing capacity of high performance polymer composites changes due to diffusion of a fluid, temperature, oxidation or the extent of the deformation. Hence, there is a need to study the response of bodies under such degradation mechanisms. In this paper, we study the effect of degradation and healing due to the diffusion of a fluid on the response of a solid which prior to the diffusion can be described by the generalized neo-Hookean model. We show that a generalized neo-Hookean solid - which behaves like an elastic body (i.e., it does not produce entropy) within a purely mechanical context - creeps and stress relaxes when infused with a fluid and behaves like a body whose material properties are time dependent. We specifically investigate the torsion of a generalized neo-Hookean circular cylindrical annulus infused with a fluid. The equations of equilibrium for a generalized neo-Hookean solid are solved together with the convection-diffusion equation for the fluid concentration. Different boundary conditions for the fluid concentration are also considered. We also solve the problem for the case when the diffusivity of the fluid depends on the deformation of the generalized neo-Hookean solid.Comment: 24 pages, 10 figures, submitted to Mechanics of Time-dependent Material

    Influence of thermally induced chemorheological changes on the torsion of elastomeric circular cylinders

    Full text link
    When an elastomeric material is deformed and subjected to temperatures above some characteristic value T cr (near 100 ∘ C for natural rubber), its macromolecular structure undergoes time and temperature-dependent chemical changes. The process continues until the temperature decreases below T cr . Compared to the virgin material, the new material system has modified properties (reduced stiffness) and permanent set on removal of the applied load.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46097/1/161_2006_Article_9.pd

    Influence of Thermally Induced Chemorheological Changes on the Inflation of Spherical Elastomeric Membranes

    Full text link
    When an elastomeric material is deformed and subjected to temperatures above some chemorheological value T cr (near 100°C for natural rubber), its macromolecular structure undergoes time and temperature dependent chemical changes. The process continues until the temperature decreases below T cr . Compared to the virgin material, the new material system has modified properties (often a reduced stiffness) and permanent set on removal of the applied load. A recently proposed constitutive theory is used to study the influence of chemorheological changes on the inflation of an initially isotropic spherical rubber membrane. The membrane is inflated while at a temperature below T cr . We then look at the pressure response assuming the sphere's radius is held fixed while the temperature is increased above T cr for a period of time and then returned to its original value. The inflation pressure during this process is expressed in terms of the temperature, representing entropic stiffening of the elastomer, and a time dependent property that represents the kinetics of the chemorheological change in the elastomer. When the membrane has been returned to its original temperature, it is shown to have a permanent set and a modified pressure-inflated radius relation. Their dependence on the initial inflated radius, material properties and kinetics of chemorheological change is studied when the underlying elastomeric networks are neo-Hookean or Mooney–Rivlin.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42688/1/10659_2005_Article_9020.pd

    Effect of internal friction on transformation twin dynamics in SrxBa1-xSnO3 perovskite

    Full text link
    The dynamics of transformation twins in SrxBa1-xSnO3 (x=0.6,0.8) perovskite has been studied by dynamical mechanical analysis in three-point bend geometry. This material undergoes phase transitions from orthorhombic to tetragonal and cubic structures on heating. The mechanical loss signatures of the transformation twins include relaxation and frequency-independent peaks in the orthorhombic and tetragonal phases, with no observed energy dissipation in the cubic phase. The macroscopic shape, orientation and relative displacements of twin walls have been calculated from bending and anisotropy energies. The mechanical loss angle and distribution of relaxation time are discussed in term of bending modes of domain walls.Comment: 20 pages, 4 figure

    A reactivity-selectivity study of the Friedel-Crafts acetylation of 3,3′-dimethylbiphenyl and the oxidation of the acetyl derivatives

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Friedel-Crafts acetylation is an important route to aromatic ketones, in research laboratories and in industry. The acetyl derivatives of 3,3′-dimethylbiphenyl (3,3′-dmbp) have applications in the field of liquid crystals and polymers and may be oxidized to the dicarboxylic acids and derivatives that are of interest in cancer treatment.</p> <p>Findings</p> <p>The effect of solvent and temperature on the selectivity of monoacetylation of 3,3’-dmbp by the Perrier addition procedure was studied using stoichiometric amounts of reagents. 4-Ac-3,3′-dmbp was formed almost quantitatively in boiling 1,2-dichloroethane and this is almost twice the yield hitherto reported. Using instead a molar ratio of substrate:AcCl:AlCl<sub>3</sub> equal to 1:4:4 or 1:6:6 in boiling 1,2-dichloroethane, acetylation afforded 4,4′- and 4,6′-diacetyl-3,3′-dmbp in a total yield close to 100%. The acetyl derivatives were subsequently converted to the carboxylic acids by hypochlorite oxidation. The relative stabilities of the isomeric products and the corresponding σ-complexes were studied by DFT calculations and the data indicated that mono- and diacetylation followed different mechanisms.</p> <p>Conclusions</p> <p>Friedel-Crafts acetylation of 3,3′-dmbp using the Perrier addition procedure in boiling 1,2-dichloroethane was found to be superior to other recipes. The discrimination against the 6-acetyl derivative during monoacetylation seems to reflect a mechanism including an AcCl:AlCl<sub>3</sub> complex or larger agglomerates as the electrophile, whereas the less selective diacetylations of the deactivated 4-Ac-3,3′-dmbp are suggested to include the acetyl cation as the electrophile. The DFT data also showed that complexation of intermediates and products with AlCl<sub>3</sub> does not seem to be important in determining the mechanism.</p
    • …
    corecore