213 research outputs found

    Canonical description of incompressible fluid -- Dirac brackets approach

    Full text link
    We present a novel canonical description of the incompressible fluid dynamics. This description uses the dynamical constraints, in our case reflecting "incompressibility" assumption, and leads to replacement of usual hydrodynamical Poisson brackets for density and velocity fields with Dirac brackets. The resulting equations are then known nonlinear, and non-local in space, equations for incompressible fluid velocity.Comment: 7 pages, late

    "Gauging" the Fluid

    Full text link
    A consistent framework has been put forward to quantize the isentropic, compressible and inviscid fluid model in the Hamiltonian framework, using the Clebsch parameterization. The naive quantization is hampered by the non-canonical (in particular field dependent) Poisson Bracket algebra. To overcome this problem, the Batalin-Tyutin \cite{12} quantization formalism is adopted in which the original system is converted to a local gauge theory and is embedded in a {\it canonical} extended phase space. In a different reduced phase space scheme \cite{vy} also the original model is converted to a gauge theory and subsequently the two distinct gauge invariant formulations of the fluid model are related explicitly. This strengthens the equivalence between the relativistic membrane (where a gauge invariance is manifest) and the fluid (where the gauge symmetry is hidden). Relativistic generalizations of the extended model is also touched upon.Comment: Version to appear in J.Phys. A: Mathematical and Genera

    Human PrP90-231-induced cell death is associated with intracellular accumulation of insoluble and protease-resistant macroaggregates and lysosomal dysfunction

    Get PDF
    To define the mechanisms by which hPrP90-231 induces cell death, we analyzed its interaction with living cells and monitored its intracellular fate. Treatment of SH-SY5Y cells with fluorescein-5-isothiocyanate (FITC)-conjugated hPrP90-231 caused the accumulation of cytosolic aggregates of the prion protein fragment that increased in number and size in a time-dependent manner. The formation of large intracellular hPrP90-231 aggregates correlated with the activation of apoptosis. hPrP90-231 aggregates occurred within lysotracker-positive vesicles and induced the formation of activated cathepsin D (CD), indicating that hPrP90-231 is partitioned into the endosomal–lysosomal system structures, activating the proteolytic machinery. Remarkably, the inhibition of CD activity significantly reduced hPrP-90-231-dependent apoptosis. Internalized hPrP90-231 forms detergent-insoluble and SDS-stable aggregates, displaying partial resistance to proteolysis. By confocal microscopy analysis of lucifer yellow (LY) intracellular partition, we show that hPrP90-231 accumulation induces lysosome destabilization and loss of lysosomal membrane impermeability. In fact, although control cells evidenced a vesicular pattern of LY fluorescence (index of healthy lysosomes), hPrP90-231-treated cells showed diffuse cytosolic fluorescence, indicating LY diffusion through damaged lysosomes. In conclusion, these data indicate that exogenously added hPrP90-231 forms intralysosomal deposits having features of insoluble, protease-resistant aggregates and could trigger a lysosome-mediated apoptosis by inducing lysosome membrane permeabilization, followed by the release of hydrolytic enzymes

    Calcium binding promotes prion protein fragment 90–231 conformational change toward a membrane destabilizing and cytotoxic structure

    Get PDF
    Microglia-mediated inflammation in the central nervous system is a hallmark of the pathogenesis of several neurodegenerative diseases including Alzheimer's disease. Microglial cells activation follows the deposition of amyloid beta fibrils and it is generally considered a triggering factor in the early steps of the onset of Alzheimer's disease. Although the initial engagement of microglia seems to play a neuroprotective role, many lines of evidence indicate that a persistent activation with the production of pro-inflammatory molecules contributes to dismantle neuronal activity and to induce neuronal loss occurring in neurodegenerative diseases. To date, limited proteomic data are available on activated microglial cells in response to extracellular amyloidogenic peptides. In this study, murine microglial cells have been employed to investigate the effects of amyloid beta peptides in triggering microglial activation. The response was monitored at the proteome level through a two-dimensional gel electrophoresis based approach. Results show only a limited number of differentially expressed proteins, among these a more acidic species of the cytosolic actin, and the 14-3-3 protein, found significantly up-regulated in A-activated cells. 14-3-3 belongs to a regulatory protein family involved in important cellular processes, including those leading to neurodegenerative diseases, and thus its increased expression suggests a role of this protein in tuning microglia activation

    The inhibition of FGF receptor 1 activity mediates sorafenib-induced antiproliferative effects in human mesothelioma tumor-initiating cells

    Get PDF
    Tumor-initiating cells (TICs), the subset of cells within tumors endowed with stem-like features, being highly resistant to conventional cytotoxic drugs, are the major cause of tumor relapse. The identification of molecules able to target TICs remains a significant challenge in cancer therapy. Using TIC-enriched cultures (MM1, MM3 and MM4), from 3 human malignant pleural mesotheliomas (MPM), we tested the effects of sorafenib on cell survival and the intracellular mechanisms involved. Sorafenib inhibited cell-cycle progression in all the TIC cultures, but only in MM3 and MM4 cells this effect was associated with induction of apoptosis via the down-regulation of Mcl-1. Although sorafenib inhibits the activity of several tyrosine kinases, its effects are mainly ascribed to Raf inhibition. To investigate the mechanisms of sorafenib-mediated antiproliferative activity, TICs were treated with EGF or bFGF causing, in MM3 and MM4 cells, MEK, ERK1/2, Akt and STAT3 phosphorylation. These effects were significantly reduced by sorafenib in bFGF-treated cells, while a slight inhibition occurred after EGF stimulation, suggesting that sorafenib effects are mainly due to FGFR inhibition. Indeed, FGFR1 phosphorylation was inhibited by sorafenib. A different picture was observed in MM1 cells, which, releasing high levels of bFGF, showed an autocrine activation of FGFR1 and a constitutive phosphorylation/activation of MEK-ERK1/2. A powerful inhibitory response to sorafenib was observed in these cells, indirectly confirming the central role of sorafenib as FGFR inhibitor. These results suggest that bFGF signaling may impact antiproliferative response to sorafenib of MPM TICs, which is mainly mediated by a direct FGFR targeting

    The influence of hygroscopic movement on seed dispersal in Daucus carota (Apiaceae)

    Full text link
    The influence of hygroscopic movement on seed dispersal in Daucus carota was examined. When relative humidity increases, umbels containing mature fruits close; when relative humidity drops, umbels open. Tests of the effectiveness of smalland large-angled umbels on dispersing seeds under various conditions demonstrate that umbels responding greatly to relative humidity (i.e. opening wide) lose seeds more quickly than do umbels responding little, and do not disperse them as far. As relative humidity increases, number of dispersing seeds drops to near zero. Response to changes in relative humidity within an umbel progressively increases from late August when dispersal begins. Umbels that slowly increase their response retain some seeds that may disperse over snow in winter. Individual variation in response to relative humidity is high among plants beginning dispersal at the same time. This variability is probably maintained by the variable consequences of dispersing seeds at different times.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47734/1/442_2004_Article_BF00541784.pd

    Alien Plants Introduced by Different Pathways Differ in Invasion Success: Unintentional Introductions as a Threat to Natural Areas

    Get PDF
    BACKGROUND: Understanding the dimensions of pathways of introduction of alien plants is important for regulating species invasions, but how particular pathways differ in terms of post-invasion success of species they deliver has never been rigorously tested. We asked whether invasion status, distribution and habitat range of 1,007 alien plant species introduced after 1500 A.D. to the Czech Republic differ among four basic pathways of introduction recognized for plants. PRINCIPAL FINDINGS: Pathways introducing alien species deliberately as commodities (direct release into the wild; escape from cultivation) result in easier naturalization and invasion than pathways of unintentional introduction (contaminant of a commodity; stowaway arriving without association with it). The proportion of naturalized and invasive species among all introductions delivered by a particular pathway decreases with a decreasing level of direct assistance from humans associated with that pathway, from release and escape to contaminant and stowaway. However, those species that are introduced via unintentional pathways and become invasive are as widely distributed as deliberately introduced species, and those introduced as contaminants invade an even wider range of seminatural habitats. CONCLUSIONS: Pathways associated with deliberate species introductions with commodities and pathways whereby species are unintentionally introduced are contrasting modes of introductions in terms of invasion success. However, various measures of the outcome of the invasion process, in terms of species' invasion success, need to be considered to accurately evaluate the role of and threat imposed by individual pathways. By employing various measures we show that invasions by unintentionally introduced plant species need to be considered by management as seriously as those introduced by horticulture, because they invade a wide range of seminatural habitats, hence representing even a greater threat to natural areas

    Molecular Structure of Amyloid Fibrils Controls the Relationship between Fibrillar Size and Toxicity

    Get PDF
    According to the prevailing view, soluble oligomers or small fibrillar fragments are considered to be the most toxic species in prion diseases. To test this hypothesis, two conformationally different amyloid states were produced from the same highly pure recombinant full-length prion protein (rPrP). The cytotoxic potential of intact fibrils and fibrillar fragments generated by sonication from these two states was tested using cultured cells.For one amyloid state, fibril fragmentation was found to enhance its cytotoxic potential, whereas for another amyloid state formed within the same amino acid sequence, the fragmented fibrils were found to be substantially less toxic than the intact fibrils. Consistent with the previous studies, the toxic effects were more pronounced for cell cultures expressing normal isoform of the prion protein (PrP(C)) at high levels confirming that cytotoxicity was in part PrP(C)-dependent. Silencing of PrP(C) expression by small hairpin RNAs designed to silence expression of human PrP(C) (shRNA-PrP(C)) diminished the deleterious effects of the two amyloid states to a different extent, suggesting that the role of PrP(C)-mediated and PrP(C)-independent mechanisms depends on the structure of the aggregates.This work provides a direct illustration that the relationship between an amyloid's physical dimension and its toxic potential is not unidirectional but is controlled by the molecular structure of prion protein (PrP) molecules within aggregated states. Depending on the structure, a decrease in size of amyloid fibrils can either enhance or abolish their cytotoxic effect. Regardless of the molecular structure or size of PrP aggregates, silencing of PrP(C) expression can be exploited to reduce their deleterious effects

    Ξ²-hairpin-mediated formation of structurally distinct multimers of neurotoxic prion peptides

    Get PDF
    Protein misfolding disorders are associated with conformational changes in specific proteins, leading to the formation of potentially neurotoxic amyloid fibrils. During pathogenesis of prion disease, the prion protein misfolds into Ξ²-sheet rich, protease-resistant isoforms. A key, hydrophobic domain within the prion protein, comprising residues 109–122, recapitulates many properties of the full protein, such as helix-to-sheet structural transition, formation of fibrils and cytotoxicity of the misfolded isoform. Using all-atom, molecular simulations, it is demonstrated that the monomeric 109–122 peptide has a preference for Ξ±-helical conformations, but that this peptide can also form Ξ²-hairpin structures resulting from turns around specific glycine residues of the peptide. Altering a single amino acid within the 109–122 peptide (A117V, associated with familial prion disease) increases the prevalence of Ξ²-hairpin formation and these observations are replicated in a longer peptide, comprising residues 106–126. Multi-molecule simulations of aggregation yield different assemblies of peptide molecules composed of conformationally-distinct monomer units. Small molecular assemblies, consistent with oligomers, comprise peptide monomers in a Ξ²-hairpin-like conformation and in many simulations appear to exist only transiently. Conversely, larger assemblies are comprised of extended peptides in predominately antiparallel Ξ²-sheets and are stable relative to the length of the simulations. These larger assemblies are consistent with amyloid fibrils, show cross-Ξ² structure and can form through elongation of monomer units within pre-existing oligomers. In some simulations, assemblies containing both Ξ²-hairpin and linear peptides are evident. Thus, in this work oligomers are on pathway to fibril formation and a preference for Ξ²-hairpin structure should enhance oligomer formation whilst inhibiting maturation into fibrils. These simulations provide an important new atomic-level model for the formation of oligomers and fibrils of the prion protein and suggest that stabilization of Ξ²-hairpin structure may enhance cellular toxicity by altering the balance between oligomeric and fibrillar protein assemblies
    • …
    corecore