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Abstract

The pathological form of prion protein (PrPSc), as other amyloidogenic proteins, causes a marked increase of membrane
permeability. PrPSc extracted from infected Syrian hamster brains induces a considerable change in membrane ionic
conductance, although the contribution of this interaction to the molecular mechanism of neurodegeneration process is
still controversial. We previously showed that the human PrP fragment 90–231 (hPrP90–231) increases ionic conductance
across artificial lipid bilayer, in a calcium-dependent manner, producing an alteration similar to that observed for PrPSc. In
the present study we demonstrate that hPrP90–231, pre-incubated with 10 mM Ca++ and then re-suspended in physiological
external solution increases not only membrane conductance but neurotoxicity as well. Furthermore we show the existence
of a direct link between these two effects as demonstrated by a highly statistically significant correlation in several
experimental conditions. A similar correlation between increased membrane conductance and cell degeneration has been
observed assaying hPrP90–231 bearing pathogenic mutations (D202N and E200K). We also report that Ca++ binding to
hPrP90–231 induces a conformational change based on an alteration of secondary structure characterized by loss of alpha-
helix content causing hydrophobic amino acid exposure and proteinase K resistance. These features, either acquired after
controlled thermal denaturation or induced by D202N and E200K mutations were previously identified as responsible for
hPrP90–231 cytotoxicity. Finally, by in silico structural analysis, we propose that Ca++ binding to hPrP90–231 modifies amino
acid orientation, in the same way induced by E200K mutation, thus suggesting a pathway for the structural alterations
responsible of PrP neurotoxicity.

Citation: Sorrentino S, Bucciarelli T, Corsaro A, Tosatto A, Thellung S, et al. (2012) Calcium Binding Promotes Prion Protein Fragment 90–231 Conformational
Change toward a Membrane Destabilizing and Cytotoxic Structure. PLoS ONE 7(7): e38314. doi:10.1371/journal.pone.0038314

Editor: Ilia V. Baskakov, University of Maryland, United States of America

Received January 28, 2012; Accepted May 8, 2012; Published July 11, 2012

Copyright: � 2012 Sorrentino et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding was provided by the Italian Ministry of University and Research: PRIN 2007 to Mazzanti, PRIN 2007 to Schininà, PRIN 2008 to Florio, FIRB 2011
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Introduction

Prion diseases, also called transmissible spongiform encepha-

lopathy (TSE), are fatal neurodegenerative disorders of humans

and animals characterized by sporadic, inherited and infective

(transmissible) aetiology, including, among the human diseases,

Creutzfeldt-Jakob disease (CJD), Gerstmann-Straussler-Scheinker

disease, fatal familial insomnia and kuru [1,2]. The epidemic

nature of TSE in domestic and wild animals constitutes a serious

health problem also for humans. In fact, in past years the

appearance of a new variant of CJD, associated to the

consumption of bovine spongiform encephalopathy-contaminated

beef, created a troubling new scenario in the transmission of prion

diseases [3]. TSE are invariably fatal, with death occurring

frequently in less than 1 year after the first symptoms appear [4].

From a neuropathology point of view TSE are characterized by

cerebral spongiform degeneration, loss of neurons and gliosis,

often associated with amyloid deposition [1]. According to the

‘‘protein only’’ hypothesis [5], TSE share a common pathogenic

event: the posttranslational misfolding of a membrane-anchored

glycoprotein (cellular prion protein, PrPC) into a protease-resistant,

aggregation-prone isoform (PrPSc). PrPSc is considered the main, if

not the solely, component of the prion, the infectious entity of TSE

[1]. PrPC-PrPSc conversion, physiologically prevented by energy

barrier, can occur as a spontaneous stochastic event, possibly

favored by mutations in the PrP gene (PRNP) or acquired by

infection with exogenous PrPSc molecules. The marked resistance

to proteolysis of PrPSc, generating fragments of 27–30 KDa (from

which the name of PrP27–30), determines its deposition, as

partially cleaved protein, in the extracellular space and the

formation of amyloid plaques. Neuronal rarefaction and gliosis

occur, although not invariantly, in brain areas where a significant
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PrPSc deposition is detectable, suggesting that the protein could

trigger the inflammatory and apoptotic cascades [6].

PrP fragments, corresponding to the protease-resistant portion

of PrPSc, are widely used to study PrP pathogenic refolding and

neurotoxicity. They are characterized by a flexible backbone that

can undergo to a conformational rearrangement proposed as a

model of PrPC-PrPSc conversion [7–10]. Although a definitive

general agreement has not been obtained yet, it was proposed that

these PrPSc-like fragments can transmit the disease after cerebral

inoculation in rodents [11–14], supporting the ‘‘protein only’’

hypothesis for the pathogenesis of TSE [5].

We developed a model to study the neurotoxicity of PrPSc using

a recombinant peptide encompassing residues 90–231 of human

PrP (hPrP90–231), This peptide, in its native form, is a soluble

monomer, mainly structured as a-helix, thus corresponding to a

model of PrPC [15]. hPrP90–231 can be converted by mild

thermal denaturation (1 hour at 53uC) in a b-sheet-rich

conformation that renders the peptide insoluble, highly hydro-

phobic and partially resistant to proteinase K [10,16]. All these

biochemical features that resembles a PrPSc-like structure, allow

hPrP90–231 to acquire biological activities in vitro, inducing

microglial activation, astrocyte proliferation and apoptotic neuro-

nal death [7,17–20]. Thus, also considering the recent demon-

stration that different prion conformations comprise the infectious

and neurotoxic entities [21], hPrP90–231 may represent a

valuable model to study prion neurotoxicity and the potential

development of novel therapeutic approaches [16,22].

Recently, we reported that Syrian hamster PrP27–30 was able

to induce a ionic current through a lipid bilayer and that this effect

was not mimicked by hPrP90–231 in its native a-helix-rich,

monomeric conformation [23]. However, when incubated in high

[Ca++] (10 mM), hPrP90–231 induced an effect super imposable

to that of PrP27–30 [23]. However, neither the current/voltage

relationship nor the relative increases of conductance in high

external calcium concentration suggests that the divalent ion

directly contributes to membrane permeability [23]. Thus, we

hypothesized that the binding of Ca++ to the peptide may induce a

conformational change in hPrP90–231 allowing a structural

conformation similar to the Syrian hamster prion. Numerous

studies have implicated alterations in Ca++ homeostasis in the

neuronal dysfunction in several neurodegenerative diseases,

including Alzheimer disease (AD) [24,25] and TSE [26,27].

Importantly, in AD, alterations of Ca++ signalling were bidirec-

tionally related to the activation of the amyloidogenic pathway

[24,28]. As far as TSE is concerned, most studies analyzed the

effects of PrPC and PrPSc as regulator (or deregulator) of neuronal

Ca++ homeostasis (for review see [27]), but a possible role of

altered [Ca++] in PrPSc-mediated neurotoxicity is still underscored.

Age-related deficits in neuronal [Ca++] regulatory systems are well

characterized, involving higher intracellular [Ca++], enhanced

Ca++ influx through voltage-sensitive calcium channels and

reduced capacity of mitochondria to buffer Ca++ excess [29].

Recently, it was proposed that Ca++ deregulation occurring during

the aging process may facilitate the formation of pathogenic Ab
peptides, which in turn further alter neuronal Ca++ homeostasis,

generating a vicious circle [30] that could occur also during TSE.

The principal aim of this study has been to highlight both the

structural features in PrPsc oligomers that push them in the toxic

amyloidogenic cascade and the relationship between the acquire-

ment of the toxic conformation with changes in the local

environment. For this purpose we used the recombinant

hPrP90–231 fragment, taking advantage on its conformational

dependent toxicity, as detailed above [7]. We evaluated the role of

high [Ca++], as determinant of the generation of PrP toxic

molecules, analyzing the structural features of hPrP90–231

conformer generated in these experimental conditions that are

able to induce the same biological effects of Syrian hamster

purified PrPSc. We demonstrate that Ca++ binding to hPrP90–231

induces a conformational change in the peptide resembling that

previously characterized as the neurotoxic conformer [7,10].

Importantly, in this PrPSc-like conformation, hPrP90–231 caused

cytotoxic and membrane destabilizing effects identical to those

induced by Syrian hamster PrP27–30, fully validating the

proposed model. Finally, we provide a molecular model of the

structural alterations induced by in the PrP molecule after Ca++

binding, in comparison with those induced by the disease-related

pathogenic mutation E200K.

Results

Effect of Calcium on Ionic Currents Elicited by PrP Forms
The Tip Dip technique allows single-channel recordings from

artificial lipid bilayer by drastically reducing the surface area

available for proteins to insert and, consequently, the background

electrical noise. Figure 1 highlight the different ionic permeability

induced in artificial membrane of PrP27–30 (left) compared to the

recombinant hPrP90–231 (right) in agreement with previous data

[23]. We also confirmed that hPrP90–231 conductance increases

in elevated calcium ion concentration (10 mM) without apparently

increasing the divalent ion flow through the membrane [23].

To separate the effect due to the transmembrane Ca++ ionic

flow from any other possible interaction of divalent ions and PrP

peptide or the influence of high [Ca++] on the lipid bilayer, we

here recorded single channel events induced by the recombinant

peptide in Tip Dip experiments using two procedures. In the first

one, a classical dose/response curve was obtained changing [Ca++]

in the recording pipette. The second procedure consisted in one

hour pre-incubation of the PrP peptide in the different Ca++

solutions. After this period hPrP90–231 was resuspended (dilution

1:500) in the control trans solution (1.8 mM CaCl2) just before

performing the electrophysiology measurements. The results in

Figure 2 show that the effect of the different [Ca++] on membrane

conductance is similar either using the divalent ion directly in

contact with the bilayer or after one hour incubation. The

current/voltage relationships (i/Vs) on the top of Figure 2 depict

in both cases two distinct groups of data: current values obtained

with the peptide exposed to 1.8 and 5 mM Ca++ and a second set

of data concerning 10, 20 and 50 mM [Ca++]. The histograms in

the bottom of Figure 2 highlight the difference between calcium

concentration growth (vertical bars) and the increase of single

channel conductance (chart boxes). At high [Ca++] (10, 20 and

50 mM) conductance values remain constant for both the

experimental procedures. Clearly, this cannot be ascribed to a

saturation of Ca++ permeability since current data obtained using

pre-incubated hPrP90–231 (white bars) were recorded in physi-

ological [Ca++].

Effect of Calcium on in Vitro Cell Toxicity of PrP Forms
Data showed in Figure 2 suggest that membrane conductance

increasing following the Ca++ treatment is mediated by changes in

hPrP90–231 structural features rather than in the lipid bilayer

permeability properties. We previously characterized the confor-

mational changes of hPrP29–231 causing gain of toxicity: hPrP90–

231 can acquire toxic properties by mild thermal denaturation

(53uC, 1 hour) [7,22], allowing hPrP90–231 to be highly

internalized into SH-SY5Y in insoluble aggregates that caused

lysosomal dysfunction and cell apoptosis [18]. In Figure 3 panel A

the toxic properties acquired by hPrP90–231 after the thermal
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denaturation were compared with those elicited following the

incubation with increasing calcium concentrations. The results

showed that the pre-incubation of hPrP90–231 with 1.8 mM Ca++

was peculiarly devoid of any effect on SH-SY5Y cell viability while

5 mM Ca++ resulted in moderate cell death. Indeed, preincuba-

tion with 10 mM Ca++ did induce a cell toxicity comparable to the

thermal denatured peptide, after 2 days of treatment. These data

are all the more meaningful if we consider that the culture medium

itself contains high [Ca++]. Interestingly, the level of in vitro

cytotoxicity induced by thermally denatured and calcium treated

hPrP90–231 is similar with that elicited by brain extracted Syrian

hamster PrP27–30 (Fig. 3A).

In the histograms of Figure 3B we compare the membrane

conductance obtained using the manipulated hPrP90–231 peptide

in Tip Dip experiments, using the same treatment reported in the

cytotoxicity experiments depicted in Figure 3A. After mild thermal

denaturation as well as after pre-incubation in high [Ca++]

hPrP90–231 drastically increases membrane conductance to a

level similar to that induced by PrP27–30. These results suggest

that mild thermal partial denaturation and high [Ca++] play a

similar role on the functional activity of the peptide that seems to

be not linked to an increase of calcium ion permeability. We

hypothesized that Ca++ binding to the peptide is responsible of a

rearrangement of its conformation to acquire similar characteris-

tics to those obtained during the thermal denaturation procedure.

To probe this hypothesis, we pre-incubated hPrP90–231 in a

solution containing 10 mM CaCl2. Just before testing the peptide

in the Tip Dip apparatus, we diluted (1:500) the solution to reach

1.8 mM [Ca++] (Fig. 3B). Also in these experimental conditions

hPrP90–231 greatly affected ionic conductance. Even if thermal

denaturation procedure showed a bigger impact on membrane

conductance, pre-incubation with 10 mM Ca++ caused a substan-

tial increase of ion membrane permeability and the two values that

were not statistically different (n = 14). Similarly, applying the

same protocol, we demonstrate that hPrP90–231 preincubated

with 10 mM Ca++and then diluted to 1.8 mM, retains also its toxic

effects (Fig. 3A). Finally the effects of incubation with 10 mM Ca++

and thermal denaturation were not additive, as far as both cell

toxicity and membrane conductance (Fig. 3A and 3B), supporting

the hypothesis that the two protocols may induce the same

structural alterations. The effects of 10 calcium was prevented by

addition of EGTA into the incubation medium. 25 mM of the

divalent ion chelator mixed with 10 mM calcium results in a final

calcium concentration of 1.6 mM (Clampex, Molecular Device,

Novato CA) (Fig. 3A and B). As a control, both in toxicity and lipid

bilayer conductance experiments, we use a purified GST protein

at the same concentration of hPrP901–231. In three different

experimental conditions, 1.8 and 10 mM Ca++ as well as after

thermal denaturation at 53uC, there was no significant cell toxicity

(2% 65, 4% 63 and 0% 69, respectively) neither evident

transmembrane ionic flow activity. In Figure 3A and B we report

only the results of GST preincubated with 10 mM Ca++.

The general idea coming out from our experiments is that a

direct link exists between membrane ionic conductance, promoted

by the PrP after different treatments, and the ability of the same

peptide to be harmful for the cells: larger conductance results in a

higher level of toxicity.

Relationship between cytotoxicity and perturbation on the

membrane ion conductivity was also tested for single point

mutated forms hPrP90–231(E200K), that has been demonstrated

[17] to be much more toxic in its native conformation than the wt

recombinant peptide or the hPrP90–231(D202N) form, bearing a

different point mutation (Fig. 3C and D). Partial denaturation

procedure or the exposure to high calcium level did not change the

E200K mutant powerful effects on cell viability while it causes

Figure 1. Comparison between PrP27–30 protein and hPrP90–231 peptide in Tip Dip electrophysiological experiments. Fifteen
consecutive current recordings obtained at 80 mV membrane potential are shown for infected- brain-extracted protein (panel A) and recombinant
PrP peptide (panel B). Panels C and D depict corresponding current amplitude histograms. Histograms were built at each test potential and used to
calculate the ionic pathway conductance in the current/voltages relationship showed in the bottom of the figure (panels E and F). From the linear
regression of the experimental points (dotted lines) we calculate a conductance of 7260.23 to 2460.7 pS for PrP27–30 protein and hPrP90–231
peptide respectively (n = 5).
doi:10.1371/journal.pone.0038314.g001

Figure 2. Calcium concentration modulates the ionic conduc-
tance induced by hPrP90–231 recombinant peptide. A: current/
voltage relationship obtained from Tip Dip experiment using the
peptide in 5 different calcium concentrations. B: the current/voltage
relationships were obtained from experiments performed in 1.8 mM
calcium concentration but the peptide was prior incubated for 1 hour in
4 different calcium concentrations. C: the histogram shows the
conductance values versus calcium concentrations either present in
the external solution during the experiment or only used during
hPrP90–231 incubation. The conductance in the two different
conditions show similar values and reaches its maximum at 10 mM
calcium. Black and white bars visualize the calcium increase (n = 5).
doi:10.1371/journal.pone.0038314.g002

Calcium Dependent Prion Protein Toxic Conformation

PLoS ONE | www.plosone.org 4 July 2012 | Volume 7 | Issue 7 | e38314



drastic change in D202N. Conductance values calculated here by

Tip Dip technique are 2462.1 and 8062.2 pS for D202N and

E200K mutants, respectively. Thereby, the membrane conduc-

tance change induced by the two mutations proved that while the

hPrP90–231(D202N) shows a same conductance value of the w.t.

peptide, hPrP90–231(E200K) induces a high level of ion

conductivity already in its native conformation paralleling its

effects on SHSY5Y cell survival. The exposure to high calcium

level did not change the E200K mutant powerful effects on

membrane conductance; on the contrary, mimicking the native

recombinant, the peptide bearing the D202N mutation increases

cytotoxicity and conductance in the presence of both partial

denaturation procedure or high calcium exposure (Fig. 3C and D).

Relationships between PrP27–30- and hPrP90–231 Forms
Induced Ionic Current and Cell Toxicity

From all these experiments cell toxicity and membrane

conductance appear to be strictly correlated. To demonstrate this

relationship we performed a linear regression analysis comparing

the amount of cell death and the ionic conductance of hPrP90–

231 w.t. and the mutants using the data obtained in all the

previous experiments. The plot depicted in Figure 4 shows 18

different data points obtained in parallel electrophysiological and

cell survival experiments in several different conditions, including

the non pathogenic GST protein. There is a good correlation

between the toxicity data and the increase of membrane

conductivity operated by the diverse PrP peptides tested in all

the different conditions, showing a highly statistical significance

(regression coefficient, R2: 0.93, P,0.0001, Fig. 4).

Finally, to demonstrate the relationship between ionic conduc-

tance and cell toxicity in experimental conditions in which the

structural alterations of hPrP90–231 may spontaneously occur, we

evaluated the effects of the peptide after its prolonged incubation

at 37uC before being added to the cells (toxicity experiments) or to

the lipid bilayer (electrophysiology experiments). In fact, we

previously suggested that thermal denaturation at 53uC catalyzes a

spontaneous process already occurring at 37uC, reducing the time

required for the structural alterations responsible of the gain of

toxicity of hPrP90–231 [7]. In line with this hypothesis, we

demonstrated that prolonged incubation at 37uC (5 to 24 hrs)

favored the acquisition a conformation highly toxic for SH-SY5Y

cells in culture (Fig. 5A). Importantly, the same treatment also

increased ionic conductance (Fig. 5B), further correlating the two

phenomena. For comparison to the two plots were added grey

horizontal bands representing the range of high toxicity associated

with a large conductance obtained treating hPrP90–231 for a very

short time in different conditions (see Fig. 3). Longer pre-

incubations at 37uC (5, 15, 24, and 48 hrs) showed a lower

response in terms of cell death and higher ionic conductance

(Fig. 5A, B). At 72 hours the almost total recovery of cell viability is

not followed by a decrease in ionic membrane conductance. This

is probably due to the few highly reactive oligomers left during the

Figure 3. Toxicity versus membrane ionic conductance of the hPrP90–231 peptide. Histograms in panel A and B compare neuroblastoma
SH-SY5Y cell death percentage and Tip Dip membrane ionic conductance of PrP27–30 protein (scrapie) with hPrP90–231 peptide in different
experimental condition reported below each histogram. In panel C and D the same parallel study was done using two different hPrP90–231 mutants:
D202N and E200K. Cell death was measured using the MTT assay after 48 hours of treatment. * = p,0.01 vs. scrapie-induced effects.
doi:10.1371/journal.pone.0038314.g003
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aggregation process. These results are in line with our previous

reports showing that long thermal denaturation treatments favors

hPrP90–231 aggregation on preamyloid fibrils [48] that cannot be

internalized by the cells and are not cytotoxic [48,49]. Thus, we

can hypothesize that these macroaggregates/prefibrillar structures

may less efficiently interact also with the artificial lipid bilayer to

induce a reduced ionic conductance.

Effects of Ca++ Binding of hPrP90–231 Structure
To directly monitor the effects of Ca++ on hPrP90–231

structure, we analyzed several parameters that previously we

demonstrated to be determinant for the gain of toxicity of

hPrP90231. By CD analysis, we demonstrated that hPrP90–231,

which in its native conformation is mainly a-helix structured

(Fig. 6A), in the presence of increasing [Ca++], loses its

structuration. A similar structural change occurred after thermal

denaturation at 53uC [7]. Higher [Ca++] caused a reduction of the

spectroscopic signal likely due to the aggregation of the peptide. By

means of ThT binding assay, as index of b-sheet content, we also

show that incubation of hPrP90–231 with 10 mM Ca++ induced

an increase in the fluorescence emission (C-max) slightly higher

than that induced by thermal denaturation (Fig. 7), suggesting the

likely occurrence of increasing in the b-sheet content as a

consequence of incubation in high [Ca++] as demonstrated after

thermal denaturation. In fact, no additivity on ThT binding was

observed combining the two treatments on hPrP90–231 (Fig. 7).

hPrP90–231 N-terminus structural unfolding in the presence of

high [Ca++] was also monitored by measuring the intrinsic

fluorescence of the unique tryptophanylic residue located in the

position 99 of the hPrP90–231 sequence. Incubation of the peptide

with 1.8, 5 and 10 mM Ca++ caused a concentration-dependent

increase in fluorescence emission that was comparable to that

induced by thermal denaturation (data not shown). Similar results

were also obtained evaluating the hydrophobicity of the peptide: as

observed after thermal denaturation [7], increasing [Ca++]

induced a higher hydrophobic amino acid exposure on hPrP90–

231 surface as measured by TNS binding (Fig. 8A).

Finally, one of the hallmarks of pathogenic PrP is proteinase K

resistance, which can be induced in hPrP90–231 by thermal

denaturation [7]. Incubation with Ca++ (5 and 10 mM) signifi-

cantly increased the resistance of hPrP90–231 to proteinase K

digestion, with the effect induced by the concentration of 10 mM

comparable to that caused by incubation at 53uC for 1 hr (Fig. 9).

Conversely, hPrP90–231 in native conformation, or after the

incubation with low [Ca++] (1.8 mM), was completely digested

even at the lowest PrP/PK ratio (500/1) (Fig. 9).

Similar results were obtained using hPrP90–231 mutants. E200K

mutation that per se shows high TNS binding (Fig. 8B) and tryptophan

Figure 4. Correlation between toxicity and membrane conduc-
tance of hPrP90–231 peptide. All the experimental conditions data
reported can be compared with the PrP27–30 protein data (1)
representing the native pathological prion protein. Data are plotted
as linear regression and statistical evaluation was performed by ANOVA.
doi:10.1371/journal.pone.0038314.g004

Figure 5. hPrP90–231 peptide incubation time course in
physiological condition of cell viability (A) and membrane
ionic conductance (B). hPrP90–231 was incubated at 37uC in 1.8 mM
Ca++, for different times, before being used in cell viability (MTT assay)
or Tip Dip experiments. The grey horizontal bar in both plots represents
the range of high toxicity (Fig. 5A) and the corresponding range of high
conductance (Fig. 5B) obtain treating hPrP90–231 in different
conditions (see Fig. 3). The two plots show that between 15 and 24
hours of hPrP90–231 incubation there is a minimum cell viability and a
maximum membrane conductance values.
doi:10.1371/journal.pone.0038314.g005
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fluorescence (data not shown) showed a moderate further increase in

these values, reaching the same values observed in the w.t. peptide

(Fig.8A).Wepreviously reportedasimilarbehavioralsoafter thermal

denaturation[17].As faras secondarystructure,hPrP90–231E200K

that is natively rich inb-sheet [17], after incubation in high [Ca++] no

significant changes were observed as farasb-sheet content although a

loss of signal was observed, likely due to protein aggregation (Fig. 6B).

Againasimilarproteinbehaviorwasdetected inprevious studiesafter

thermal denaturation [17].

D202N mutation that mildly affected native hPrP90–231

structure [17], acquired increased hydrophobicity (Fig. 8C) and

N-terminal tryptophan exposure (data not shown) after incuba-

tion in high [Ca++], resembling the structural alterations

Figure 6. Effect of Ca++ on secondary structure of hPrP90–
231 w.t. (A) and bearing E200K (B) or D202N (C) TSE-related mutations.
A. CD analysis of hPrP90–231w.t. in the presence of increasing
concentrations of Ca++ (mM: 0 = ___; 1.8 = ; 5 = ; 10 = ). A. A loss of a-
helix structure and increase in b-sheet content was observed in the w.t.
peptide for increasing Ca++ concentrations that was associated, at the

highest concentrations to a loss of spectrophotometric signal, likely due
to protein aggregation. B. CD analysis of hPrP90–231 E200K mutant in
the presence of increasing concentrations of Ca++. The peptide
structure, already enriched in b-sheet content, is not significantly
affected by the incubation with the ion. C. CD analysis of hPrP90–231
D202N mutant in the presence of increasing concentrations of Ca++.
Incubation in high Ca++ concentration reduce the a-helix content,
although showing a lower sensibility than the w.t. protein. At the
highest concentration tested a loss of spectrophotometric signal
occurs, likely due to protein aggregation.
doi:10.1371/journal.pone.0038314.g006

Figure 7. Thioflavin T binding to hPrP90–231 w.t. HPrP90–231
in native, conformation, after mild thermal denaturation (536C,
for 1 hr), after incubation for 1 hr in the presence of 10 mM
Ca++, or after a combination of both treatments was tested for
Th T binding in a fluorimetric assay, as index of b-sheet
content. As previously reported, thermal denaturation increased the
Th T binding as compared to the native peptide, but this effect was
slightly higher after incubation with Ca++. No additivity between
thermal denaturation and incubation in the presence of 10 mM Ca++

was observed.
doi:10.1371/journal.pone.0038314.g007
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observed after thermal denaturation [17]. Interestingly, CD

analysis showed that a-helix content remained unchanged in the

presence of Ca++ (Fig. 6C), as was previously described after

thermal denaturation [17]. Thus, to conclude this part of the

study we propose that the biological effects induced by hPrP90–

231 incubation in high [Ca++] are due to a structural

rearrangement that induce a conformational change closely

related to the toxic conformation we previously described after

mild thermal denaturation [7,17,48].

Molecular Modeling
Here, the structural and electrostatic changes occurring as a

result of the E200K mutation and the binding of the Ca2+ ion on

the PrP90–231 structure were analysed, in comparison to the w.t.

protein, by means of molecular mechanics based approaches and

electrostatic potential similarity analyses. The computational

protocol we used is based on the combination of LLMOD

searches and multiple minimizations and allowed to develop

reliable models for (i) the wild type PrP90–231 protein (model I)

and its E200K mutant (model II), whose NMR structures are

already well known [38,39], and (ii) the binding of the Ca++ ion by

the Pr90–231 segment of PrPC (model III) that is still unknown

and is the main goal of this study. The similarity between the

electrostatic potential at the proteins surface was then evaluated

for these models employing the Carbó similarity index (see

Material and methods). This procedure allowed us to propose a

molecular model for the binding of the Ca++ ion to PrPC protein

and suggest possible structural and electrostatic alterations

responsible for the increased neurotoxicity.

Structural, Charge and Similarity Analyses of w.t. PrPC

and the E200K Mutant
Preliminarily, we evaluated the predictive performance of

models I and II in reproducing the experimental behaviour of

the w.t. hPrP90–231 protein and its E200K variant. Both proteins

include a globular domain, residues 125–228, containing three a-

helices comprising the residues 144–154 (H1), 173–194 (H2), and

200–228 (H3) and a short anti-parallel b-sheet comprising the

residues 128–131 and 161–164 (Fig. 10, left panel). A comparison

of the NMR structures of these two proteins shows, in spite of the

Glu200RLys substitution, an almost identical overall structure,

even in the vicinity of residue 200. Indeed, except for the loss of

the Glu200-Lys204 salt-bridge interaction within the H3 helix and

significant alterations in the highly flexible loop 167–171, only

minor differences in interdomain interactions are observed.

Particularly interesting is the H-bond pattern, involving the

Arg156, His187 and Thr191 residues and connecting the C

terminus of H1 and H2 in the w.t. protein (Fig. 10, left panel), that

is lacking in the E200K variant Fig. 10, right panel). These

structural differences are all nicely reproduced by our models I

and II thus validating our MM approach.

In spite of the almost identical three-dimensional structure, the

Glu200R Lys substitution has important effects on the charge

distribution at the protein surface. Indeed, the replacement of the

Figure 8. Effect of Ca++ on hydrophobic amino acid exposure,
measured by TNS binding, of hPrP90–231 w.t. (A) and bearing
E200K (B) or D202N (C) TSE-related mutations in the presence of
increasing concentrations of Ca++ (mM: 0 = __; 1.8 = ; 5 = ; 10 = ). As
internal control, the direct effect of 10 mM Ca++ on TNS is reported (+).
A. TNS binding assay of hPrP90–231 w.t after incubation with

increasing concentrations of Ca++ show a great increase in TNS binding,
indicating the increased hydrophobicity of the peptide. B. TNS binding
assay of hPrP90–231 E200K showed a basal higher hydrophobicity than
the w.t. peptide, although in the presence of increasing concentrations
of Ca++ TNS binding greatly increased, indicating increased hydropho-
bicity of the peptide C. TNS binding assay of hPrP90–231 D202N in the
presence of increasing concentrations of Ca++. In these experimental
conditions the hydrophobicity of the peptide greatly increased, as
indicated by the TNS binding fluorescence although reaching lower
levels than observed with the other peptides.
doi:10.1371/journal.pone.0038314.g008
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negatively charged Glu with a positively charged Lys residue

results in a dramatic redistribution of the surface charges

introducing patches of positive potential around the beginning of

helix 3, and has been suggested to facilitate the PrPC to PrPSc

conversion by promoting protein-protein interactions and aggre-

gation [39].

The effects of the mutation on the electrostatic properties of

PrPC was then investigated in detail by analyzing the similarity

between the molecular electrostatic potential (MEP) near the

surface of the wild type (model I) and the E200K mutant (model II).

Such an analysis was the performed by calculating the Carbó

similarity index (sC) [47] (see Materials and Methods) between the

two MEPs on the points of a grid encompassing the superimposed

protein models (I U II). Moreover, because the H3 helix has been

suggested to play a key role in the disease-related conformational

transformation of PrPC to PrPsc in vivo [50], and is also directly

involved in the considered E200K mutation and (see below) in the

binding of Ca2+ ions, we have perform our similarity analysis with

respect to its axis (approximately corresponding to the x-axis in the

workspace coordinates of Maestro, see Computational Details).

Accordingly, the grid space was partitioned into slices perpendic-

ular to the x axis, and the similarity index was calculated on each

Figure 9. Increased proteinase K (PK) resistance of hPrP90–231 w.t. in the presence of increasing Ca++ concentrations. hPrP90–
231 w.t. was thermally denatured or preincubated with increasing concentration of Ca++ before being subjected to PK digestion with different
enzyme concentrations. Partial resistance was evaluated in Western blot experiments using the anti-PrP antibody 3F4. Left panel shows
representative immunoblots, while the graph on the right depicts the densitometry analysis of three independent experiments. Data are expressed as
percentage of the respective recombinant peptide input. * = p,0.05 and ** = p,0.01 vs. control values. In native conditions or in the presence of low
Ca++ concentrations, the peptide showed no resistance to PK digestion. After incubation with 5 or 10 mM Ca++ a partial resistance was observed for a
peptide/PK ratio of 500:1. Thermal denaturation induced a higher resistance as compared to Ca++ binding, being the immunolabeled peptide band
detectable also for a peptide/PK ratio of 200:1.
doi:10.1371/journal.pone.0038314.g009

Figure 10. Structure of the proposed Ca++ binding site in the wild type PrP90–231 protein. On the left the site with the residues still
involved in an H-bond pattern in model I (light cyan); on the right the resulting complex after Arg156 shift and Ca++ binding in model III (orange).
Hydrogen bonds (dotted red) and coordinative bonds (green) are explicitly indicated.
doi:10.1371/journal.pone.0038314.g010
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slice and the MEP similarity was monitored as a function of their

position along the x axis.

The plot of the I/II similarity index, reported in Figure 7, shows

two minima at 22–23 Å and at 62–63 Å along x axis, at the

beginning and close to the C terminus of H3, respectively (see

Figure 11 and S2).

The first minima is due to the completely different orientation of

the charged Glu168 and the Tyr169 residues in the highly flexible

loop 167–171 which significantly differs in the two protein forms.

More importantly, the lowest minimum at 62–63 Å, characterized

by a negative value of –0.25 of the Carbó index (indicating a large

MEP similarity) encompass the region around the protein surface

around H1, the C terminus of H2 and the beginning of H3, and

comprising the residue at position 200 (Fig. S2). This region also

includes the Arg156, His187 and Thr191 residues involved in the

H-bond pattern connecting the C terminus of H1 and H2 in the

w.t. protein (model I) and switched off in the E200K mutant

(model II). The presence of a deep I/II similarity minimum in this

region indicates that significant changes in the charge distribution

has occurred therein as a consequence of E200K mutation, and is

not surprising because of the charge inversion associated to the

E200K mutation and the breaking of the H-bond pattern

connecting H1 and H2. The graphical inspection of the protein

in this region revealed a significant shift of Arg156 as a

consequence of E200K mutation: indeed, while in model I the

side chain of this residues is directed toward the protein interior, in

model II it protrudes outside the protein surface and this shift

could contribute to the negative values of I/II similarity index

around 62–63 Å.

Binding of Ca++ to the Wild Type PrPC

The building of a molecular model for the binding of the Ca2+

ions to the PrPC wild type protein (model III) was carried out on

the basis of an inspection of the MEP and of the distribution of

potentially coordinating side chains around the w.t. protein

surface, suggesting a plausible metal binding site in the close

proximity of His187, Thr191 and Glu196. Although His187 and

Thr191 are involved in an H bond pattern with Arg156, that also

contributes to keep them in close proximity (Fig. 10, left), this

pattern can be easily broken, as shown by the analysis of the

E200K mutation above. We thus hypothesized that Arg156

guanidine could shift from its position in the w.t. PrPC allowing the

Ca2+ ion to coordinate the His187 and Thr191 and the nearby

Glu196. The structure of the resulting PrPC-Ca2+ complex (model

III) was calculated by using the same computational approach

employed for the calculation of models I and II. The Ca2+

coordination site resulting by our computational approach

involved His187, Thr191, Glu196 (g2 coordination) and the

backbone carbonyl oxygen of Arg 156 arranged in an distorted

square-planar coordination (Fig. 10, right).

The effects of Ca2+ coordination on the electrostatic properties

of PrPC were evaluated by the analysis of the MEP similarity of

model III with models I and II using the same approach described

above. The most important feature of the analysis of the I/III

MEP similarity as a function of their position along the x axis is the

presence of a negative minimum at 62–63 Å, with the same

position and similarity values of the minimum observed for the I/

II similarity (Fig. 11). This result clearly indicates that, the effect of

Ca2+ coordination is very similar to that induced by the E200K

mutation, leading to a redistribution of the surface charges with

patches of positive potential around the beginning of H3.

This conclusion was further supports by the analysis of the of II/

III MEP similarity which showed relatively high similarity values

(higher than 0.50) at 60–65 Å along the x axis, indicating similar

electrostatic properties of models II and model III at the beginning

of H3.

Discussion

PrP misfolding is the pathogenic event responsible of the clinical

and pathological features of TSE, including neurotoxicity and

transmissibility [51]. To date, the exact mechanisms by which the

transition PrPCRPrPSc may occur, as well as the final conforma-

tion providing PrPSc with gain of toxicity have not been

Figure 11. Plot of the Carbó similarity index (sC) for the MEPs of models I-III as a function of the position along the x axis.
doi:10.1371/journal.pone.0038314.g011

Calcium Dependent Prion Protein Toxic Conformation

PLoS ONE | www.plosone.org 10 July 2012 | Volume 7 | Issue 7 | e38314



completely elucidated. However, in the past years, several studies

using recombinant PrP molecules highlighted potential mecha-

nisms by which misfolded PrP may cause cell death and potential

molecular determinants of such effects [51]. We developed an

experimental model to study PrP neurotoxicity using an amino-

terminally truncated PrP isoform (PrP90–231) that can transit

from a PrPC-like to a PrPSc-like conformation by mild thermal

denaturation. In these conditions hPrP90–231 become b-sheet

structured, highly hydrophobic, amyloidogenic and neurotoxic. In

this study we analyzed different and possibly more physiological

mechanisms of hPrP90–231 transition toward the neurotoxic

conformation, evaluating the role of Ca++ in this process.

Moreover, comparing the effects of the recombinant protein with

PrP27–30 isolated from infected hamster brain, we identified an

altered ion current in synthetic lipid bilayers as marker of the

interaction of neurotoxic PrP molecules with cell membranes.

It is a whispered characteristic of amyloid compounds to be able

to interact with lipid bilayers [52–54]. Not only amyloid

compounds are found in close association with cell membrane

but also they are responsible to cause a vast variety of

electrophysiological transmembrane signals [55]. PrP is not an

exception. Several investigations report the ability of PrP to induce

changes in ionic conductance both in artificial [56,57] and cell

[58] membranes. Whether PrP is able to form structures similar to

conventional ion channels is still debatable. Whether the induction

of ion flux is part of the toxicity mechanism responsible for cells

death during insurgency of the pathological condition it is even

more controversial [59].

In a previous report we demonstrate that PrPSc purified from

infected hamster brain is able to open ionic conductance in which

the most probable current level is around 80 pS. On the contrary

the recombinant peptide, hPrP90–231, composed by the same

amino acid primary sequence shows an average conductance of

20 pS [23]. In the present investigation we confirm these data and

correlate the ionic conductance value with the toxicity level

obtained in neuroblastoma cell culture. Cell death percentages

follow proportionally the measured conductance calculated for the

different conditions in which we treated the PrP90–231. Patho-

logical PrPSc appears to be 5 folds more harmful when compared

with recombinant peptide in its native, a-helix structured

conformation. The arrangement of the secondary structure of

PrP peptides is known to determine their cytotoxicity. Recombi-

nant hPrP90–231 peptide is a versatile model to study the

conformation-dependent toxicity [7,10]. In a previous study it was

demonstrated that both mild thermal denaturation and the

conformational changes induced by TSE-related point mutations

drastically increases cell toxicity [17]. Here, using hPrP90–231 in

Tip Dip experiments, we demonstrate that a higher level of cell

death correspond to a higher membrane conductance values

reaching values comparable to those induced by PrP 27–30.

Importantly, similar results were obtained incubating w.t. and

mutant hPrP90–231 molecules with increasing Ca++ concentra-

tions. In these experimental conditions PrP truncated peptides

increased ionic conductance and toxicity, with a highly significant

direct relationship. Since these experimental conditions determine

a rearrangement of the tridimensional structure of the peptides, we

can conclude that the key conformational features present in the

hamster prion responsible of the membrane interaction are likely

reproduced in hPrP90–231.

This is the first evidence that biological and electrophysiological

characteristics of brain extracted PrP27–30 can be entirely

reproduced by recombinant PrP fragments. Moreover, these

results further support the use of hPrP90–231 for identification of

the mechanisms of neuronal dysfunction and neurotoxicity in TSE

patients and for the identification of potential new pharmacolog-

ical approaches to be translate in clinical setting [22,49].

The second relevant observation coming out from this study is

that the same neurotoxic conformation we previously described to

be induced by mild thermal denaturation can be reproduced in the

presence of high [Ca++]. In particular, accordingly to our

molecular modeling, to induce hPrP90–231 gain of toxicity,

Ca++ binding to the recombinant peptide might induce hPrP90–

231 aggregation that, in turn, is responsible of alterations in the

peptide three-dimensional structure, increasing of its hydropho-

bicity, and, finally inducing a partial resistance to protease K

digestion. These observations suggest two additional consider-

ations: 1) hPrP90–231, likely due to the N-terminal truncation,

show reduced energy barrier and thus is more prone to adopt a

neurotoxic conformation in different environmental conditions

(mild thermal denaturation, high divalent ion concentrations); 2)

the highly reproducible induction of the same biological effects by

hPrP90–231, independently of the means used to induce the

conformation change, suggest that this transition may represent

the (or one of the) neurotoxic PrP conformation(s) in vivo.

In this scenario the role of Ca++ on PrP peptide function it is of

fundamental importance. Increase of [Ca++] from physiological

levels up to 10 mM is directly responsible of the conformation

changes that allow acquisition of the two main biological features

identified in hPrP90–231: activation ionic conductance and

increased toxicity. To understand how Ca++ binding can induce

such a dramatic structural alteration, we performed in silico

structural analysis comparing the amino acid charge distribution

of PrP w.t. in the absence or presence of Ca++ binding in a specific

coordination site, with the model of PrP E200K. In fact, from

previous studies we identified two TSE-related PrP mutations

(D202N, E200K) that differently affected PrP a-helix 3 stability

[35]. Importantly, E200K mutation induces in hPrP90–231 a

spontaneous acquisition of the toxic and ionotropic conformation,

independently from thermal denaturation [17] or Ca++ binding.

Thus, we verified were the three-dimensional alteration induced

by the E200K mutation could be mimicked by Ca++ binding to

PrP90–231. Our in silico study confirmed this hypothesis showing

that Ca++ binding can occur in proximity of PrP pavement, in an

interdomain region connecting H1, H2 and H3 domains. The

analysis of electrostatic similarity in model I, II and III showed also

that both Ca++-bound w.t. protein and the E200K mutant are

characterized by a significant similarity in the pavement region.

This result indicates that either the mutation or Ca++ binding exert

similar effects in the charge distribution on protein surface.

Importantly, our results indicated that both E200K substitution

and Ca++ binding may reduce the strength of H1–H2 and H1–H3

interactions by a similar mechanism of electrostatic destabilization

affecting the conformational stability of the protein and, thus,

facilitating the PrPC RPrPSc transition.

Consistently with this electrostatic interpretation, it is expected

that the binding of other bivalent metal ions, such as Mg++, Zn++

or Cu++ (whose coordination features can be considered similar to

Ca++) can also induce analogous effects on w.t. protein. This

observation could be particularly relevant for Cu++ considering the

known modulator role of this ion on PrP folding and, possibly,

function [60–63]. The evaluation of Cu++ effects on hPrP90–231

structural, biochemical and biological function is currently in

progress.

Thus, using several different experimental approaches, we

demonstrated that Ca++ binding to hPrP90–231 may favor the

conversion of hPrP90–231 in a neurotoxic conformer. However,

the experimental conditions responsible to convert PrP peptide in

the harmful form are rather extreme (maximum effect at [Ca++]
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10 mM) and it is unlikely to find such a high concentration of the

divalent ions or such a high temperature (53uC in the thermal

denaturation model) in a living organism. However, two consid-

erations should be taken in account. As shown in Figure 5, the

conversion of the peptide in the toxic form can take place even in

‘‘physiological’’ conditions, such as prolonged incubation at

1.8 mM Ca++ and 37uC. The experiments reported in Fig. 5

contain indications that the toxic conformation of hPrP90–231 is

mainly due to small oligomers. Higher toxicity level and

membrane conductance occur early, after 5, 15 and 24 hours

and declines later, presumably due to the formation of bigger

aggregates. Thus, it is realistic to think that high Ca++ level and/or

high temperature work as catalyst to speed up in vitro a

spontaneous reaction. In a healthy system the rate of spontaneous

toxic PrP species formation is compatible with the ability to

efficiently eliminate the misfolded proteins. It is also possible that

the slow production of reactive peptides would favor the direct

aggregation of monomeric PrP in amorphous big aggregates

without the formation of harmful intermediated oligomeric form

[64]. However, it should be also considered a different scenario. If

the rate of PrP misfolded proteins formation drastically increases,

all the system devoted to annihilation of aberrant proteins would

be plugged and this will favored a harmful unbalanced situation.

Misfolded proteins will increase in concentration allowing the

formation of reactive oligomers before the peptides would reach

the amorphous state of big aggregates. Small oligomers in their

short lifespan will be able to react with the biological membrane

causing unregulated ionic flows, most of the time resulting in a

depolarization of the cell membrane potential. Depolarized

neuronal cells could be considered a first stage, even if reversible,

of the disease progression. In addition to that, the formation of

membrane discontinuity could also be the pathway allowing

extracellularly accumulated PrP peptides to leak in the cell to form

aggregates in the cytosol. Cytotoxicity could be the result of both

these factors. Pathogenic PrP, by changing the membrane voltage,

is able to increase intracellular Ca++ concentration through the

activation of both ion channels and ionotropic receptors. Thus, it

is likely that elevation of intracellular Ca++ may interfere with

internalized and neosynthesized PrP molecules causing a structural

alteration within the cell. In this model we have the starting of a

vicious circle in which altered PrP molecules affect intracellular

membrane permeability to Ca++ that reaching high intracellular

levels contribute to the generation of new toxic species that

altogether with the altered Ca++ homeostasis induce synapse

dysfunction and neuronal death.

In conclusion, we suggest that increased membrane permeabil-

ity due to the structural rearrangement of PrP peptide is a

spontaneous long lasting reaction. Increase of membrane conduc-

tance could be linked to pathological conditions once there is an

overproduction of PrP misfolded protein. In this case the system is

not capable to eliminate the dangerous peptide that, both for

environmental conditions and for its concentration, is allowed to

form highly reactive oligomers able to strongly interact with the

cell membrane. The possibility to form high conductance ionic

pathways could be also the vehicle to allow PrP protein inside the

cell. Here the peptide could aggregate and form deposits [18].

Alternatively misfolded PrP could form oligomers and cause

damage to internal membrane such as mitochondria, lysosomes

and nuclear envelope, determine a slowly but inexorable collapse

of the cell organization.

Materials and Methods

Ethics Statement: N/A.

Prion Samples
The protease-resistant core (PrP27–30) of PrPTSE extracted

from brains of TSE-affected hamsters PrP27–30 was kindly

provided by the Pocchiari’s group [31]. Recombinant prion

peptide PrP 90–231 (hPrP90–231) was synthesized in E. coli and

purified as previously reported [15]. The same procedure was used

to purify the E200K and D202N hPrP90–231 mutants [17]. GST

was purified from the empty pGEX-4T-2 vector following the

same procedure used to purify hPrP90–231 [7].

Cell Cultures and Treatments
SH-SY5Y human neuroblastoma cells (ICLC-Biological Bank

and Cell Factory, IRCCS IST Genova, code HTL95013) were

cultured in MEM/F12 (Euroclone, Milano, Italy) supplemented

with 15% fetal bovine serum (Gibco-Invitrogen, Milano, Italy),

2 mM glutamine (Euroclone, Milano, Italy), pen/strep 100 mg/

ml (Euroclone) and grown in 5% CO2 atmosphere at 37uC.

Twenty-four hours after plating, unless otherwise stated, culture

medium was replaced with fresh medium containing a reduced

(2%) FBS content, to induce growth arrest and minimize

spontaneous apoptosis that serum withdrawal causes in this cell

model [32]. Cells were treated for 2 days with a single

administration of hPrP90–231 directly to the culture medium to

mimic the interaction of PrPSc deposits with the neurons as

occurred in vivo [33].

Survival Assay
Mitochondrial function, as index of cell viability, was evaluated

by measuring the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) (Sigma-Aldrich, Milano,

Italy). The cleavage of MTT to a purple formazan byproduct by

mitochondrial dehydrogenases was spectrophotometrically quan-

tified, as reported [34]. Briefly, cells were incubated for 1 h with

0.25 mg/mL MTT in serum-free Dulbecco’s modified Eagle’s

medium at 37uC; medium, was removed and formazan crystals

dissolved in dimethyl-sulfoxide (DMSO). Absorbance values were

measured at wave length of 570 nm. Experiments were performed

in quadruplicate and repeated at least three times. Data are

reported as mean values 6 standard error (S.E.) Statistical analysis

was performed by means of one-way ANOVA followed by

Newman and Keuls test. A p value less than or equal to 0.05 was

considered statistically significant.

Electrophysiological Assay
Single-channel recordings from lipid bilayer were obtained

using the Tip-Dip method. Patch clamp pipettes (Garner Glass

7052) were made using a P97 Sutter Instruments puller (Novato,

CA), coated with Sylgard (Dow Corning, Midland, MI) and fire-

polished to a tip diameter of 1–1.5 mm and 5–7 MOhm resistance.

1,2-diphytanoyl-sn-glycero-3-phosphocholine (Diph-PC, Avanti

Polar Lipids, Inc., Birmingham, AL) was used to arise the lipid

monolayer. An Axopatch 200 B amplifier and pClamp 8

(Molecular Device, Novato, CA) were used to record and analyze,

digitized at 5 kHz and filtered at 1000 Hz the detected current.

Membrane voltages (Vm) and ion currents were expressed

considering relative to the pipette solution. An inward current is

defined as a cation moving from the electrode to the bath

chamber. Data are presented as mean 6 SEM. Values obtained

from different experiments were tested for statistical differences

using independent two population t test or ANOVA routine

(Origin software; Origin Lab, Northampton, MA). Different

buffers were employed in the two compartments. The ion

compositions of the trans solutions were defined in order to
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resemble the physiological composition (144 mM NaCl, 1.8 mM

CaCl2, 1.2 mM MgCl2, 10 mM Hepes, pH 7.0), and the cis

solution to mimic the cytoplasmic ion milieu (144 mM KCl,

0.1 mM CaCl2, 1.2 mM MgCl2, 1.1 EGTA, 10 mM Hepes,

pH 6.2). Samples of hPrP90–231, wt and its E200K and D202N

mutated forms employed in all Tip-Dip assays were made up to a

final concentration of approximately 80 mM in a solution

containing: 144 mM NaCl, 1.8 mM CaCl2, 1.2 mM MgCl2,

10 mM Hepes, pH 5.0 and DMSO 55%. 20 microliters of the

stock solutions were added to 1 ml of the test solutions to a final

concentration of 160 nM. In ion current measurements achieved

in essaying the effect of Ca++, increasing amounts of CaCl2 (5, 10,

20, 50 mM) were added in the trans solution.

Circular Dichroism (CD)
Spectra were measured on a Jasco J-600 spectropolarimeter,

calibrated with camphorsulphonic acid [35]. Samples were diluted

in 10 mM phosphate buffer, pH 7.2. Spectra were recorded

between 200 and 250 nm with a 1 nm spectral step size, 0.5 nm

bandwidth and 100 nm/min scan rate, using 1 mm quartz cell.

Spectra represent the average of 10 scans subtracted of blank

values (10 scans of buffer alone). The experiments were

independently repeated three times.

Thioflavin T (Th T) Binding Assay
Peptides was incubated with 10 mM Th T (Sigma-Aldrich) (in

20 mM NaOPO4, 0.15 M NaCl, pH 7.0) and fluorescence was

monitored using Lambda Bio 10 spectrofluorometer (Perkin

Elmer). Th T fluorescence was measured with excitation at

450 nm and emission from 460 to 560 nm with excitation and

emission slits of 10 nm, as reported [36]. Spectra are reported

subtracted of respective blank values.

2-(p-Toluidinyl)naphthalene-6-sulfonate (TNS) Binding
Assay

This assay was performed with a Spex spectrofluorimeter

(model Floromax) equipped with a temperature-controlled cell

compartment maintained at 18uC using the hydrophobicity

fluorescent probe TNS, as reported [37]. In particular, the

fluorescence emission of the complex hPrP90–231-TNS (1 mM of

peptide plus 100 mM of TNS, dissolved in 2 mM phosphate buffer

pH 6.0) was recorded between 400 and 510 nm, with an

excitation wavelength at 365 nm. The spectra were reported

subtracted of the respective blank solution containing 100 mM

TNS plus 1.8, 5, or 10 mM Ca++.

Intrinsic Fluorescence Measurements
Fluorescence spectra were measured with a Lambda Bio 10

spectrofluorimeter (Perkin-Elmer). Tryptophan emission from of

hPrP90–231 was recorded between 295 and 420 nm, with

excitation at 295 nm. The spectra were reported subtracted of

the respective blank values [37].

hPrP90–231 Proteinase K (PK) Resistance Assay
hPrP90–231 resistance to proteolysis was revealed by immuno-

blotting [7]. Digestion was performed treating 100 mg proteins

with increasing concentrations of PK (1, 2, 10 mg/ml) for 30

minutes at 37uC. Digestion was stopped by boiling samples in

Laemmli buffer. Digestion profile was detected subjecting samples

to 15% SDS-PAGE followed by immunoblotting using the anti

PrP mouse monoclonal antibody 3F4 (epitope corresponding to

amino acids 109–112 in the human PrP: Signet Lab, London,

UK).

Computational Details: Structural Analyses of PrPC Wild
Type and E200K Mutant

The experimental NMR structures of the recombinant wild type

hPrP90–230 and the hPrP90–231 E200K mutant were taken from

the PDB archives, entry code 1QM0 [38] and 1FKC [39],

respectively. The selected entries were graphically inspected and

analyzed to find possible structural mismatches by using the

molecular modelling software Maestro [40].

A geometry minimization has been preliminarily performed for

both proteins, starting from the experimental structures, by using

MacroModel [41] with the OPLS-AA force field [42,43] and a

gradient threshold of 0.05 kJ mol21 Å21. The water environment

was simulated with the GB/SA implicit solvation model imple-

mented in the program [44].

The structures so obtained correspond to local minima of the

potential energy surfaces (PES) for the two proteins and were then

employed as input for large-scale low mode (LLMOD) searches

[45,46] allowing the characterization of further local minima in a

wider section of their PES. The LLMOD calculations were carried

out by imposing the default set-up to the search variables, carrying

out 1000 Monte Carlo steps before stopping, setting 3.0 and 6.0 Å

as minimum and maximum distance step, respectively, and

imposing a convergence limit to the local minimization steps of

1.0 kJ mol21 Å21, to increase the time performances of the

search.

The exploration of the first 30 pure normal modes correspond-

ing to the eigenvectors of the input structure Hessian with the

lowest frequencies was carried out by the global search option,

allowing each Monte Carlo step to begin with the preceding

structure, provided its energy is within 100 kJ mol–1 of the global

minimum.

The LLMOD outputs were subsequently minimized and

characterized as unique structures within a gradient threshold of

0.050 kJ mol21 Å21, using the multiple minimization module

implemented in MacroModel. The multiple minimization outputs

were further filtered to eliminate high energy conformation and,

eventually, the structure corresponding to the global minimum

was taken as representative of the water solution structure for each

PrPC form, and hereafter referred to as models I and II.

These two models were then superimposed by the minimization

of root mean square deviations (RMSD) of Ca backbone positions.

The resulting structures were centered and aligned with respect to

center of mass and moment of inertia, using the dedicated tool of

Maestro. The direction of the smallest principal moment of inertia,

used as x-axis in the workspace coordinates of Maestro, is almost

aligned with H3, the longest among the three helices character-

izing the three-dimensional structure of PrPC.

Preliminarily, the calculated structures of models I and II were

graphically inspected with Maestro to retrieve qualitative infor-

mation on the main differences and similarities between the two

PrPC forms. In particular, we focused on the distribution of

charged residues on the whole protein surface because of their

major contribution to the molecular electrostatic potential (MEP).

We also characterized salt bridges and most stable hydrogen bonds

(involving charged residues) in terms of intra or interdomain

interactions which are expected to play a major role in the

stabilization of the tertiary structure. A more detailed analysis was

then performed by comparing the MEPs of models I and II in the

space surrounding the superimposed protein models (I U II) by

means of a in-home Perl script (Fig. S1). Both MEPs were probed

on the same three-dimensional grid around the (I U II)

superimposed structure and characterized by a grain of 0.35 Å

and dimensions of 66647640 Å, large enough to ensure an

adequate mapping of MEP in the space surrounding the entire
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protein surface. The electrostatic potential on a grid point r was

calculated by using the classical expression:

V ( r!)~
1

4pe0

XN

j~1

qj

R
!���

j
{ r!

����
where N is the number of protein atoms, and R

!
j and qj the vector

associated to position of jth protein atom, and its OPLS-AA

charge, respectively [44].

The MEP similarity between model I and II was then evaluated

at different portion of the grid by the calculation of Carbó

similarity index (sC) [47] using the following formula:

sC ½A,B�~

PNpoints

i~1

VA(i)VB(i)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNpoints

i~1

½VA(i)�2
PNpoints

i~1

½VB(i)�2
s

where VI(i) and VII(i) are the corresponding MEPs calculated at ith

point, and Npoints is the number of grid points considered for the

calculation of similarity.

Moreover, because the important role played by the H3 helix,

characterizing the whole protein frame, we performed our

similarity analysis with respect to its axis (approximately taken as

the x-axis in the workspace coordinates of Maestro). Accordingly,

the grid space was partitioned into slices in the yz plane, i.e.

perpendicular to the x axis, and sC was calculated on each slice

(defined as a set of 6 layers of points sharing the same x coordinate)

by including only the points external to the protein surface. The

whole grid space was partitioned into 34 slices and the whole

procedure was parallelized thus providing higher computational

performance. An estimate of sC as a function of the position of the

slice along the x axis was thus obtained including in the previous

formula only the points of single yz-slices.

Ca2+ Binding to Wild Type PrPC

The building of a molecular model for the binding of the Ca++

to the PrPC wild type protein (model III) was carried out on the

basis of an inspection of the MEP and of the distribution of

potentially coordinating side chains around the w.t. protein

surface, suggesting a plausible metal binding site in the close

proximity of Arg 156, His187, Thr191 and Glu196 (see Results

and Discussion).

Model I (see above) was used as a template to generate an initial

guess of model III, by using the Maestro graphical interface. Ca++

binding site was generated by moving the side chain of Arg 156

toward the external bulk, using the ‘‘quick torsion’’ tool of

Maestro. The Ca++ ion was then inserted in the site left by the

Arg156 side chain and suitably placed to bind the imidazolic

nitrogen of His 187, the phenolic oxygen of Thr 191, and the

backbone carbonyl oxygen of Arg 156 itself. This structure

underwent the same computational treatment of models I and II

(see above) consisting of local minimization, LLMOD search, and

multiple minimization, which eventually led to model III.

Model III was then compared with models I and II with the

same procedure employed for the comparison between models I

and II. After superposition to model I or II, model III underwent

graphical inspection and the mapping of MEP by using the same

approach employed in the I/II comparison. Carbó similarity index

was calculated for both I/III and II/III comparisons as a function

of the position along the x axis and the results were compared to

the corresponding I/II analyses.

Supporting Information

Figure S1 Scheme of the Perl script algorithm for the
mapping of MEP at the protein surface according to the
partitioning scheme into slices along the x axis.

(PDF)

Figure S2 Ribbon view of protein model I (dark green),
II (light cyan) and III (orange) after superposition
through minimization of Ca RMSD. The grid points (red

spheres) corresponding to the two minima of I/II similarity, the

hypothesized Ca++ binding site and the mutation site are also

displayed.

(PDF)
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