205 research outputs found

    Precision high voltage divider for the KATRIN experiment

    Full text link
    The Karlsruhe Tritium Neutrino Experiment (KATRIN) aims to determine the absolute mass of the electron antineutrino from a precise measurement of the tritium beta-spectrum near its endpoint at 18.6 keV with a sensitivity of 0.2 eV. KATRIN uses an electrostatic retardation spectrometer of MAC-E filter type for which it is crucial to monitor high voltages of up to 35 kV with a precision and long-term stability at the ppm level. Since devices capable of this precision are not commercially available, a new high voltage divider for direct voltages of up to 35 kV has been designed, following the new concept of the standard divider for direct voltages of up to 100 kV developed at the Physikalisch-Technische Bundesanstalt (PTB). The electrical and mechanical design of the divider, the screening procedure for the selection of the precision resistors, and the results of the investigation and calibration at PTB are reported here. During the latter, uncertainties at the low ppm level have been deduced for the new divider, thus qualifying it for the precision measurements of the KATRIN experiment.Comment: 22 pages, 12 figure

    Fulminant neuroleptic malignant syndrome after perioperative withdrawal of antiParkinsonian medication

    Get PDF
    Neuroleptic malignant syndrome is a rare complication when using neuroleptic drugs. We report the case of a patient with severe Parkinson's disease who developed neuroleptic malignant syndrome after withdrawal of his antiParkinsonian medication for elective coronary artery bypass grafting. Sodium dantrolene may be a therapeutic option in severe case

    Computing stability of multi-dimensional travelling waves

    Full text link
    We present a numerical method for computing the pure-point spectrum associated with the linear stability of multi-dimensional travelling fronts to parabolic nonlinear systems. Our method is based on the Evans function shooting approach. Transverse to the direction of propagation we project the spectral equations onto a finite Fourier basis. This generates a large, linear, one-dimensional system of equations for the longitudinal Fourier coefficients. We construct the stable and unstable solution subspaces associated with the longitudinal far-field zero boundary conditions, retaining only the information required for matching, by integrating the Riccati equations associated with the underlying Grassmannian manifolds. The Evans function is then the matching condition measuring the linear dependence of the stable and unstable subspaces and thus determines eigenvalues. As a model application, we study the stability of two-dimensional wrinkled front solutions to a cubic autocatalysis model system. We compare our shooting approach with the continuous orthogonalization method of Humpherys and Zumbrun. We then also compare these with standard projection methods that directly project the spectral problem onto a finite multi-dimensional basis satisfying the boundary conditions.Comment: 23 pages, 9 figures (some in colour). v2: added details and other changes to presentation after referees' comments, now 26 page

    Ultra-stable implanted 83Rb/83mKr electron sources for the energy scale monitoring in the KATRIN experiment

    Full text link
    The KATRIN experiment aims at the direct model-independent determination of the average electron neutrino mass via the measurement of the endpoint region of the tritium beta decay spectrum. The electron spectrometer of the MAC-E filter type is used, requiring very high stability of the electric filtering potential. This work proves the feasibility of implanted 83Rb/83mKr calibration electron sources which will be utilised in the additional monitor spectrometer sharing the high voltage with the main spectrometer of KATRIN. The source employs conversion electrons of 83mKr which is continuously generated by 83Rb. The K-32 conversion line (kinetic energy of 17.8 keV, natural line width of 2.7 eV) is shown to fulfill the KATRIN requirement of the relative energy stability of +/-1.6 ppm/month. The sources will serve as a standard tool for continuous monitoring of KATRIN's energy scale stability with sub-ppm precision. They may also be used in other applications where the precise conversion lines can be separated from the low energy spectrum caused by the electron inelastic scattering in the substrate.Comment: 30 pages, 10 figures, 1 table, minor revision of the preprint, accepted by JINST on 5.2.201

    Technical design and commissioning of the KATRIN large-volume air coil system

    Get PDF
    The KATRIN experiment is a next-generation direct neutrino mass experiment with a sensitivity of 0.2 eV (90% C.L.) to the effective mass of the electron neutrino. It measures the tritium β\beta-decay spectrum close to its endpoint with a spectrometer based on the MAC-E filter technique. The β\beta-decay electrons are guided by a magnetic field that operates in the mT range in the central spectrometer volume; it is fine-tuned by a large-volume air coil system surrounding the spectrometer vessel. The purpose of the system is to provide optimal transmission properties for signal electrons and to achieve efficient magnetic shielding against background. In this paper we describe the technical design of the air coil system, including its mechanical and electrical properties. We outline the importance of its versatile operation modes in background investigation and suppression techniques. We compare magnetic field measurements in the inner spectrometer volume during system commissioning with corresponding simulations, which allows to verify the system's functionality in fine-tuning the magnetic field configuration. This is of major importance for a successful neutrino mass measurement at KATRIN.Comment: 32 pages, 16 figure

    The KATRIN Pre-Spectrometer at reduced Filter Energy

    Get PDF
    The KArlsruhe TRItium Neutrino experiment, KATRIN, will determine the mass of the electron neutrino with a sensitivity of 0.2 eV (90% C.L.) via a measurement of the beta-spectrum of gaseous tritium near its endpoint of E_0 =18.57 keV. An ultra-low background of about b = 10 mHz is among the requirements to reach this sensitivity. In the KATRIN main beam-line two spectrometers of MAC-E filter type are used in a tandem configuration. This setup, however, produces a Penning trap which could lead to increased background. We have performed test measurements showing that the filter energy of the pre-spectrometer can be reduced by several keV in order to diminish this trap. These measurements were analyzed with the help of a complex computer simulation, modeling multiple electron reflections both from the detector and the photoelectric electron source used in our test setup.Comment: 22 pages, 12 figure

    A pulsed, mono-energetic and angular-selective UV photo-electron source for the commissioning of the KATRIN experiment

    Get PDF
    The KATRIN experiment aims to determine the neutrino mass scale with a sensitivity of 200 meV/c^2 (90% C.L.) by a precision measurement of the shape of the tritium β\beta-spectrum in the endpoint region. The energy analysis of the decay electrons is achieved by a MAC-E filter spectrometer. To determine the transmission properties of the KATRIN main spectrometer, a mono-energetic and angular-selective electron source has been developed. In preparation for the second commissioning phase of the main spectrometer, a measurement phase was carried out at the KATRIN monitor spectrometer where the device was operated in a MAC-E filter setup for testing. The results of these measurements are compared with simulations using the particle-tracking software "Kassiopeia", which was developed in the KATRIN collaboration over recent years.Comment: 19 pages, 16 figures, submitted to European Physical Journal

    Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector

    Get PDF
    The Project 8 collaboration seeks to measure the absolute neutrino mass scale by means of precision spectroscopy of the beta decay of tritium. Our technique, cyclotron radiation emission spectroscopy, measures the frequency of the radiation emitted by electrons produced by decays in an ambient magnetic field. Because the cyclotron frequency is inversely proportional to the electron's Lorentz factor, this is also a measurement of the electron's energy. In order to demonstrate the viability of this technique, we have assembled and successfully operated a prototype system, which uses a rectangular waveguide to collect the cyclotron radiation from internal conversion electrons emitted from a gaseous 83m^{83m}Kr source. Here we present the main design aspects of the first phase prototype, which was operated during parts of 2014 and 2015. We will also discuss the procedures used to analyze these data, along with the features which have been observed and the performance achieved to date.Comment: 3 pages; 2 figures; Proceedings of Neutrino 2016, XXVII International Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, U
    corecore