71 research outputs found

    Optimization of aluminumand its alloys doping by ionic-beamplasmacoating

    Get PDF
    The surface morphology, chemical composition, microstructure, nanohardness, and tribological properties of systems were investigated. The paper considers the methodology offilmpplicationusingionic-beam irradiation by means of the installation'Solo' with different exposure modes. Irradiation modes which allow an increase in the microhardness of the material and a decrease in its wear rate are defined. Physical substantiation of this phenomenon is given

    Surface structure of commercially pure VT1-0 titanium irradiated by an intense pulsed electron beam

    Get PDF
    It is shown that pulsed electron beam irradiation of commercially pure titanium at a beam energy density of 10 J/cm{2}, pulse duration of 150 [mu]s, number of pulses of N=5 pulses, and pulse repetition frequency of 0.3 Hz with attendant polymorphic [alpha]->[beta]->[ alpha] transformations allows a more than five-fold decrease in the grain and subgrain sizes of the material structure

    Nonequilibrium structural condition in the medical TiNi-based alloy surface layer treated by electron beam

    Get PDF
    The research is devoted to study the structural condition and their evolution from the surface to the depth of TiNi specimens treated by low-energy high-current electron beams with surface melting at a beam energy density E = 10 J/cm2, number of pulses N = 10, and pulse duration [tau] = 50 Ps. Determined thickness of the remelted layer, found that it has a layered structure in which each layer differs in phase composition and structural phase state. Refinement B2 phase lattice parameters in local areas showed the presence of strong inhomogeneous lattice strain

    Improving the Mechanical Properties of SiC-ceramics by means of Vacuum Electron-ion-plasma Alloying with Titanium

    Get PDF
    The investigation results of elemental and phase composition, state of defective substructure and microhardness of the surface layer of "film (Ti)/substrate (SiC-ceramics)" system (Ti film 0.5 [mu]m thick was deposited on the surface of SiC-ceramics) subjected to treatment with an intense pulsed low-energy electron beam (15 J/cm{2}, 200 [mu]s, 0.3 s{-1}, 20 pulses) are presented. It is shown that irradiation of the "film (Ti)/substrate (SiC-ceramics)" system with an electron beam is accompanied by the formation of multielement multiphase (SiC; TiC; Ti5Si[3]) surface layer having submicro- and nanocrystalline structure. Microhardness of the irradiated surface layer reaches a value of 74 GPa, that is twice the value of microhardness of SiC-ceramics (36 GPa)

    Formation of the surface alloys by high-intensity pulsed electron beam irradiation of the coating/substrate system

    Get PDF
    The results of the analysis of the structure and properties of the surface layer of aluminum A7 subjected to alloying by the intense pulsed electron beam melting of the film / substrate system. Fold increase in strength and tribological properties of the modified surface layer due to the formation of submicro - nanoscale multiphase structure have been revealed

    Improving the Mechanical Properties of SiC-ceramics by means of Vacuum Electron-ion-plasma Alloying with Titanium

    Get PDF
    The investigation results of elemental and phase composition, state of defective substructure and microhardness of the surface layer of "film (Ti)/substrate (SiC-ceramics)" system (Ti film 0.5 [mu]m thick was deposited on the surface of SiC-ceramics) subjected to treatment with an intense pulsed low-energy electron beam (15 J/cm{2}, 200 [mu]s, 0.3 s{-1}, 20 pulses) are presented. It is shown that irradiation of the "film (Ti)/substrate (SiC-ceramics)" system with an electron beam is accompanied by the formation of multielement multiphase (SiC; TiC; Ti5Si[3]) surface layer having submicro- and nanocrystalline structure. Microhardness of the irradiated surface layer reaches a value of 74 GPa, that is twice the value of microhardness of SiC-ceramics (36 GPa)

    Combined surface modification of commercial aluminum

    Get PDF
    The paper analyzes research data on the structure and properties of surface layers of commercially pure A7-grade aluminum subjected to treatment that combines deposition of a thin metal film, intense pulsed electron beam irradiation, and nitriding in low-pressure arc plasma. The analysis shows that the combined method of surface modification provides the formation of a multilayer structure with submicro- and nano-sized phases in the material through a depth of up to 40 ?m, allowing a manifold increase in its surface microhardness and wear resistance (up to 4 and 9 times, respectively) compared to the material core. The main factors responsible for the high surface strength are the saturation of the aluminum lattice with nitrogen atoms and the formation of nano-sized particles of aluminum nitride and iron aluminides
    • …
    corecore