212 research outputs found
Search for sterile neutrinos at the DANSS experiment
DANSS is a highly segmented 1~m plastic scintillator detector. Its 2500
one meter long scintillator strips have a Gd-loaded reflective cover. The DANSS
detector is placed under an industrial 3.1~ reactor of the
Kalinin Nuclear Power Plant 350~km NW from Moscow. The distance to the core is
varied on-line from 10.7~m to 12.7~m. The reactor building provides about 50~m
water-equivalent shielding against the cosmic background. DANSS detects almost
5000 per day at the closest position with the cosmic
background less than 3. The inverse beta decay process is used to detect
. Sterile neutrinos are searched for assuming the model
(3 active and 1 sterile ). The exclusion area in the plane is obtained using a ratio of positron energy
spectra collected at different distances. Therefore results do not depend on
the shape and normalization of the reactor spectrum, as well
as on the detector efficiency. Results are based on 966 thousand antineutrino
events collected at 3 distances from the reactor core. The excluded area covers
a wide range of the sterile neutrino parameters up to
in the most sensitive region.Comment: 10 pages, 13 figures, version accepted for publicatio
DANSSino: a pilot version of the DANSS neutrino detector
DANSSino is a reduced pilot version of a solid-state detector of reactor
antineutrinos (to be created within the DANSS project and installed under the
industrial 3 GW(th) reactor of the Kalinin Nuclear Power Plant -- KNPP).
Numerous tests performed at a distance of 11 m from the reactor core
demonstrate operability of the chosen design and reveal the main sources of the
background. In spite of its small size (20x20x100 ccm), the pilot detector
turned out to be quite sensitive to reactor antineutrinos, detecting about 70
IBD events per day with the signal-to-background ratio about unity.Comment: 16 pages, 11 figures, 3 tables. arXiv admin note: substantial text
overlap with arXiv:1304.369
‘Diagrams of Motion’:Stop-Motion Animation as a Form of Kinetic Sculpture in the Short Films of Jan Švankmajer and the Brothers Quay
Jean-Luc Godard wrote that ‘The cinema is not an art which films life; the cinema is something between art and life’ (cited in Roud’s, 2010, biography of Godard), an observation particularly true of stop-motion animation. The filmmakers discussed in this essay, Jan Švankmajer and the Brothers Quay, share a fascination with the latent content of found objects; they believe that forgotten toys, discarded tools and other such objects contain echoes of past experiences. Extrapolating Švankmajer’s belief that memories are imparted to the objects we touch, the manipulation of his found objects as puppets in his films becomes a means of evoking and repurposing their latent content, just as the Quays develop their dreamlike films from the psychic content they perceive in their armatures. Making a case study of a selection of these animators’ short films, this article examines the practice of stop-motion animation against that of kinetic sculpture, unpicking the complexities of the relationship between the inherently static mediums of sculpture and photography – symbolic of a fixed moment in time – and that of stop-motion animation, a temporal pocket in which these fossilized moments are revived once more
Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter
Showers produced by positive hadrons in the highly granular CALICE
scintillator-steel analogue hadron calorimeter were studied. The experimental
data were collected at CERN and FNAL for single particles with initial momenta
from 10 to 80 GeV/c. The calorimeter response and resolution and spatial
characteristics of shower development for proton- and pion-induced showers for
test beam data and simulations using Geant4 version 9.6 are compared.Comment: 26 pages, 16 figures, JINST style, changes in the author list, typos
corrected, new section added, figures regrouped. Accepted for publication in
JINS
The Time Structure of Hadronic Showers in highly granular Calorimeters with Tungsten and Steel Absorbers
The intrinsic time structure of hadronic showers influences the timing
capability and the required integration time of hadronic calorimeters in
particle physics experiments, and depends on the active medium and on the
absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15
small plastic scintillator tiles read out with Silicon Photomultipliers, the
time structure of showers is measured on a statistical basis with high spatial
and temporal resolution in sampling calorimeters with tungsten and steel
absorbers. The results are compared to GEANT4 (version 9.4 patch 03)
simulations with different hadronic physics models. These comparisons
demonstrate the importance of using high precision treatment of low-energy
neutrons for tungsten absorbers, while an overall good agreement between data
and simulations for all considered models is observed for steel.Comment: 24 pages including author list, 9 figures, published in JINS
Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter
We present a study of showers initiated by electrons, pions, kaons, and
protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE
scintillator-tungsten analogue hadronic calorimeter. The data were recorded at
the CERN Super Proton Synchrotron in 2011. The analysis includes measurements
of the calorimeter response to each particle type as well as measurements of
the energy resolution and studies of the longitudinal and radial shower
development for selected particles. The results are compared to Geant4
simulations (version 9.6.p02). In the study of the energy resolution we include
previously published data with beam momenta from 1 GeV to 10 GeV recorded at
the CERN Proton Synchrotron in 2010.Comment: 35 pages, 21 figures, 8 table
Belle II Technical Design Report
The Belle detector at the KEKB electron-positron collider has collected
almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an
upgrade of KEKB is under construction, to increase the luminosity by two orders
of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2
/s luminosity. To exploit the increased luminosity, an upgrade of the Belle
detector has been proposed. A new international collaboration Belle-II, is
being formed. The Technical Design Report presents physics motivation, basic
methods of the accelerator upgrade, as well as key improvements of the
detector.Comment: Edited by: Z. Dole\v{z}al and S. Un
Design, construction, quality control and performance study with cosmic rays of modules for the LHCb electromagnetic calorimeter
Abstract This article addresses the design and construction of modules for the LHCb electromagnetic calorimeter. Quality control and preinstallation tests, including cells pre-calibration, are described and the results of light yield measurements are given
- …
