208 research outputs found

    Type IV Bartter syndrome: report of two new cases

    Get PDF
    Bartter syndrome with sensorineural deafness (type IV Bartter syndrome) is a subtype of this tubular disease, and is due to mutations in the BSND gene. Out of a population of 92 patients with Bartter syndrome, five suffered from mild to severe hypoacusia and were selected for mutational screening. A homozygous mutation in the BSND gene was found in two female patients. The first patient was found to have a substitution in intron 1 donor splice site at position +5 (c.420+5G>C), whereas the second patient has a homozygous 3G>A substitution leading to the loss of the start codon for the translation of the BSND mRNA

    Decreased C-Src Expression Enhances Osteoblast Differentiation and Bone Formation

    Get PDF
    c-src deletion in mice leads to osteopetrosis as a result of reduced bone resorption due to an alteration of the osteoclast. We report that deletion/reduction of Src expression enhances osteoblast differentiation and bone formation, contributing to the increase in bone mass. Bone histomorphometry showed that bone formation was increased in Src null compared with wild-type mice. In vitro, alkaline phosphatase (ALP) activity and nodule mineralization were increased in primary calvarial cells and in SV40-immortalized osteoblasts from Src−/− relative to Src+/+ mice. Src-antisense oligodeoxynucleotides (AS-src) reduced Src levels by ∼60% and caused a similar increase in ALP activity and nodule mineralization in primary osteoblasts in vitro. Reduction in cell proliferation was observed in primary and immortalized Src−/− osteoblasts and in normal osteoblasts incubated with the AS-src. Semiquantitative reverse transcriptase-PCR revealed upregulation of ALP, Osf2/Cbfa1 transcription factor, PTH/PTHrP receptor, osteocalcin, and pro-alpha 2(I) collagen in Src-deficient osteoblasts. The expression of the bone matrix protein osteopontin remained unchanged. Based on these results, we conclude that the reduction of Src expression not only inhibits bone resorption, but also stimulates osteoblast differentiation and bone formation, suggesting that the osteogenic cells may contribute to the development of the osteopetrotic phenotype in Src-deficient mice

    Bone pain and extremely low bone mineral density due to severe vitamin D deficiency in celiac disease

    Get PDF
    Case report A 29-year-old wheelchair-bound woman was presented to us by the gastroenterologist with suspected osteomalacia. She had lived in the Netherlands all her life and was born of Moroccan parents. Her medical history revealed iron deficiency, growth retardation, and celiac disease, for which she was put on a gluten-free diet. She had progressive bone pain since 2 years, difficulty with walking, and about 15 kg weight loss. She had a short stature, scoliosis, and pronounced kyphosis of the spine and poor condition of her teeth. Laboratory results showed hypocalcemia, an immeasurable serum25-hydroxyvitamin D level, and elevated parathyroid hormone and alkaline phosphatase levels. Spinal radiographs showed unsharp, low contrast vertebrae. Bone mineral density measurement at the lumbar spine and hip showed a T-score of -6.0 and -6.5, respectively. A bone scintigraphy showed multiple hotspots in ribs, sternum, mandible, and long bones. A duodenal biopsy revealed villous atrophy (Marsh 3C) and positive antibodies against endomysium, transglutaminase, and gliadin, compatible with active celiac disease. A bone biopsy showed severe osteomalacia but normal bone volume. She was treated with calcium intravenously and later orally. Furthermore, she was treated with high oral doses of vitamin D and a gluten-free diet. After a few weeks of treatment, her bone pain decreased, and her muscle strength improved. Discussion In this article, the pathophysiology and occurrence of osteomalacia as a complication of celiac disease are discussed. Low bone mineral density can point to osteomalacia as well as osteoporosis. © International Osteoporosis Foundation and National Osteoporosis Foundation 2011

    KIM-1 and NGAL: new markers of obstructive nephropathy

    Get PDF
    Congenital obstructive nephropathy is the primary cause of chronic renal failure in children. Rapid diagnosis and initiation of the treatment are vital to preserve function and/or to slow down renal injury. The aim of our study was to determine whether urinary (u) kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) may be useful non-invasive biomarkers in children with congenital hydronephrosis (HN) caused by ureteropelvic junction obstruction. The study cohort consisted of 20 children with severe HN who required surgery (median age 2.16 years) and two control groups (control group 1: 20 patients with mild, non-obstructive HN; control group 2: 25 healthy children). All of the children had normal renal function. Immunoenzymatic ELISA commercial kits were used to measure uKIM-1 and uNGAL concentrations. The preoperative median uKIM-1/creatinine (cr.) and uNGAL levels were significantly greater in the children with severe HN than in both control groups. Three months after surgery, uNGAL had decreased significantly (p < 0.05) in the children with severe HN, but was still higher than that in control group 2 children (p < 0.05). Receiver operator characteristic analyses revealed a good diagnostic profile for uKIM-1 and uNGAL in terms of identifying a differential renal function of <40% in HN patients (area under the curve (AUC) 0.8 and 0.814, respectively) and <45% in all examined children (AUC 0.779 and 0.868, respectively). Based on these results, we suggest that increasing uNGAL and uKIM-1 levels are associated with worsening obstruction. Further studies are required to confirm a potential application of uKIM-1 and uNGAL as useful biomarkers for the diagnosis and progression of chronic kidney disease

    Screening of protein kinase inhibitors identifies PKC inhibitors as inhibitors of osteoclastic acid secretion and bone resorption

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone resorption is initiated by osteoclastic acidification of the resorption lacunae. This process is mediated by secretion of protons through the V-ATPase and chloride through the chloride antiporter ClC-7. To shed light on the intracellular signalling controlling extracellular acidification, we screened a protein kinase inhibitor library in human osteoclasts.</p> <p>Methods</p> <p>Human osteoclasts were generated from CD14+ monocytes. The effect of different kinase inhibitors on lysosomal acidification in human osteoclasts was investigated using acridine orange for different incubation times (45 minutes, 4 and 24 hours). The inhibitors were tested in an acid influx assay using microsomes isolated from human osteoclasts. Bone resorption by human osteoclasts on bone slices was measured by calcium release. Cell viability was measured using AlamarBlue.</p> <p>Results</p> <p>Of the 51 compounds investigated only few inhibitors were positive in both acidification and resorption assays. Rottlerin, GF109203X, Hypericin and Ro31-8220 inhibited acid influx in microsomes and bone resorption, while Sphingosine and Palmitoyl-DL-carnitine-Cl showed low levels of inhibition. Rottlerin inhibited lysosomal acidification in human osteoclasts potently.</p> <p>Conclusions</p> <p>In conclusion, a group of inhibitors all indicated to inhibit PKC reduced acidification in human osteoclasts, and thereby bone resorption, indicating that acid secretion by osteoclasts may be specifically regulated by PKC in osteoclasts.</p

    Beneficial use of immunoglobulins in the treatment of Sydenham chorea

    Get PDF
    This double case report indicates that treatment with intravenous immunoglobulins (IVIG) is effective in patients with Sydenham chorea (SC). SC is a rare but impressive clinical manifestation following streptococcal infection. This movement disorder characterised by chorea, emotional lability and muscle weakness, is one of the major criteria of acute rheumatic fever. Treatment of SC is typically limited to supportive care and palliative medications. Curative treatment is still in the experimental stage. Recent research on patients with SC proved that antibodies against the group A streptococcus cross-react with epitopes of neurons in the basal ganglia, namely, intracellular tubulin and extracellular lysoganglioside. Therefore, immune modulating therapy by means of prednisone, plasma exchange and IVIG are mentioned in the literature as possible effective treatment. Beneficial effect of IVIG has been shown in several diseases with molecular mimicry as the underlying pathophysiology. In this paper, we describe two girls aged 11 and 13 years, respectively, who presented with SC having severe disabilities in their daily live. We treated both patients with IVIG 400 mg/kg/day for 5 days. Treatment was tolerated well and had a pronounced positive effect. Shortly after the drug was administered, all signs and symptoms disappeared in both patients. Based upon these patients, we highlight IVIG as a serious treatment option for SC

    Alterations in osteoclast function and phenotype induced by different inhibitors of bone resorption - implications for osteoclast quality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Normal osteoclasts resorb bone by secretion of acid and proteases. Recent studies of patients with loss of function mutations affecting either of these processes have indicated a divergence in osteoclastic phenotypes. These difference in osteoclast phenotypes may directly or indirectly have secondary effects on bone remodeling, a process which is of importance for the pathogenesis of both osteoporosis and osteoarthritis. We treated human osteoclasts with different inhibitors and characterized their resulting function.</p> <p>Methods</p> <p>Human CD14 + monocytes were differentiated into mature osteoclasts using RANKL and M-CSF. The osteoclasts were cultured on bone in the presence or absence of various inhibitors: Inhibitors of acidification (bafilomycin A1, diphyllin, ethoxyzolamide), inhibitors of proteolysis (E64, GM6001), or a bisphosphonate (ibandronate). Osteoclast numbers and bone resorption were monitored by measurements of TRACP activity, the release of calcium, CTX-I and ICTP, as well as by counting resorption pits.</p> <p>Results</p> <p>All inhibitors of acidification were equally potent with respect to inhibition of both organic and inorganic resorption. In contrast, inhibition of proteolysis by E64 potently reduced organic resorption, but only modestly suppressed inorganic resorption. GM6001 alone did not greatly affect bone resorption. However, when GM6001 and E64 were combined, a complete abrogation of organic bone resorption was observed, without a great effect on inorganic resorption. Ibandronate abrogated both organic and inorganic resorption at all concentrations tested [0.3-100 μM], however, this treatment dramatically reduced TRACP activity.</p> <p>Conclusions</p> <p>We present evidence highlighting important differences with respect to osteoclast function, when comparing the different types of osteoclast inhibitors. Each class of osteoclast inhibitors will lead to different alterations in osteoclast quality, which secondarily may lead to different bone qualities.</p
    • …
    corecore