187 research outputs found

    Patterned structures of in situ size controlled CdS nanocrystals in a polymer matrix under UV irradiation.

    Get PDF
    A method of in situ formation of patterns of size controlled CdS nanocrystals in a polymer matrix by pulsed UV irradiation is presented. The films consist of Cd thiolate precursors with different carbon chain lengths embedded in TOPAS polymer matrices. Under UV irradiation the precursors are photolyzed, driving to the formation of CdS nanocrystals in the quantum size regime, with size and concentration defined by the number of incident UV pulses, while the host polymer remains macroscopically/microscopically unaffected. The emission of the formed nanocomposite materials strongly depends on the dimensions of the CdS nanocrystals, thus, their growth at the different phases of the irradiation is monitored using spatially resolved photoluminescence by means of a confocal microscope. X-ray diffraction measurements verified the existence of the CdS nanocrystals, and defined their crystal structure for all the studied cases. The results are reinforced by transmission electron microscopy. It is proved that the selection of the precursor determines the efficiency of the procedure, and the quality of the formed nanocrystals. Moreover it is demonstrated that there is the possibility of laser induced formation of well-defined patterns of CdS nanocrystals, opening up new perspectives in the development of nanodevices

    Light-emitting nanocomposite cds-polymer electrospun fibres via in-situ nanoparticle generation

    Get PDF
    We report on the simple, in situ generation of CdS nanocrystals inside electrospun polymer fibres by thermal decomposition of a cadmium thiolate precursor, leading to nanocomposite light-emitting fibres. The modifications induced in the precursor by the thermal decomposition are investigated by a morphological, structural and spectroscopic analysis of the resulting nanocomposite fibres. This approach allows us to overcome nanofabrication difficulties related to disfavoured micro- or nanofluidic molecular flow as given by the direct incorporation of particles in the electrospinning solution. This method therefore enables the synthesis of luminescent, CdS-based composite fibres with emission peaked in the visible range, suitable as building blocks for nanophotonic devices based on light-emitting nanomaterials

    Multi-photon in situ synthesis and patterning of polymer-embedded nanocrystals

    Get PDF
    The in situ synthesis and patterning of CdS nanocrystals in a polymer matrix is performed via multi-photon absorption. Quantum-sized CdS nanocrystals are obtained by irradiating a cadmium thiolate precursor dispersed in a transparent polymer matrix with a focused near infrared femtosecond laser beam. High resolution transmission electron microscopy evidences the formation of nanocrystals with wurtzite crystalline phase. Fluorescent, nanocomposite patterns with sub-micron spatial resolution are fabricated by scanning the laser beam on the polymer-precursor composite. Moreover, the emission energy of the CdS nanocrystals can be tuned in the range 2.5-2.7 eV, by changing the laser fluences in the range 0.10-0.45 J cm -2. This method enables therefore the synthesis of luminescent, CdS-based composites to be used within patterned nanophotonic and light-emitting devices

    Mono- and bi-functional arenethiols as surfactants for gold nanoparticles: synthesis and characterization

    Get PDF
    Stable gold nanoparticles stabilized by different mono and bi-functional arenethiols, namely, benzylthiol and 1,4-benzenedimethanethiol, have been prepared by using a modified Brust's two-phase synthesis. The size, shape, and crystalline structure of the gold nanoparticles have been determined by high-resolution electron microscopy and full-pattern X-ray powder diffraction analyses. Nanocrystals diameters have been tuned in the range 2 ÷ 9 nm by a proper variation of Au/S molar ratio. The chemical composition of gold nanoparticles and their interaction with thiols have been investigated by X-ray photoelectron spectroscopy. In particular, the formation of networks has been observed with interconnected gold nanoparticles containing 1,4-benzenedimethanethiol as ligand

    X-ray phase imaging: from synchrotron to hospital

    No full text
    • …
    corecore