309 research outputs found

    Development of an external ceramic insulation for the space shuttle orbiter. Part 3: Development of stabilized aluminum phosphate fibers

    Get PDF
    The development of reusable surface insulation materials that are thermal shock resistant and highly refractory is discussed. A stabilized, high-cristobalite, aluminum orthophosphate fiber was developed and found to possess the desired qualities. The application of such a material to heat shielding for space shuttles is examined

    A novel ultrafast-low-dose computed tomography protocol allows concomitant coronary artery evaluation and lung cancer screening

    Get PDF
    BACKGROUND:Cardiac computed tomography (CT) is often performed in patients who are at high risk for lung cancer in whom screening is currently recommended. We tested diagnostic ability and radiation exposure of a novel ultra-low-dose CT protocol that allows concomitant coronary artery evaluation and lung screening. METHODS: We studied 30 current or former heavy smoker subjects with suspected or known coronary artery disease who underwent CT assessment of both coronary arteries and thoracic area (Revolution CT, General Electric). A new ultrafast-low-dose single protocol was used for ECG-gated helical acquisition of the heart and the whole chest. A single IV iodine bolus (70-90 ml) was used. All patients with CT evidence of coronary stenosis underwent also invasive coronary angiography. RESULTS: All the coronary segments were assessable in 28/30 (93%) patients. Only 8 coronary segments were not assessable in 2 patients due to motion artefacts (assessability: 98%; 477/485 segments). In the assessable segments, 20/21 significant stenoses (> 70% reduction of vessel diameter) were correctly diagnosed. Pulmonary nodules were detected in 5 patients, thus requiring to schedule follow-up surveillance CT thorax. Effective dose was 1.3 ± 0.9 mSv (range: 0.8-3.2 mSv). Noteworthy, no contrast or radiation dose increment was required with the new protocol as compared to conventional coronary CT protocol. CONCLUSIONS:The novel ultrafast-low-dose CT protocol allows lung cancer screening at time of coronary artery evaluation. The new approach might enhance the cost-effectiveness of coronary CT in heavy smokers with suspected or known coronary artery disease

    Fluctuation properties of laser light after interaction with an atomic system: comparison between two-level and multilevel atomic transitions

    Get PDF
    The complex internal atomic structure involved in radiative transitions has an effect on the spectrum of fluctuations (noise) of the transmitted light. A degenerate transition has different properties in this respect than a pure two-level transition. We investigate these variations by studying a certain transition between two degenerate atomic levels for different choices of the polarization state of the driving laser. For circular polarization, corresponding to the textbook two-level atom case, the optical spectrum shows the characteristic Mollow triplet for strong laser drive, while the corresponding noise spectrum exhibits squeezing in some frequency ranges. For a linearly polarized drive, corresponding to the case of a multilevel system, additional features appear in both optical and noise spectra. These differences are more pronounced in the regime of a weakly driven transition: whereas the two-level case essentially exhibits elastic scattering, the multilevel case has extra noise terms related to spontaneous Raman transitions. We also discuss the possibility to experimentally observe these predicted differences for the commonly encountered case where the laser drive has excess noise in its phase quadrature.Comment: New version. Accepted for publication in Physical Review

    Energy-time entangled qutrits: Bell tests and quantum communication

    Full text link
    We have developed a scheme to generate, control, transmit and measure entangled photonic qutrits (two photons each of dimension d = 3). A Bell test of this source has previously been reported elsewhere [1], therefore, here we focus on how the control of the system is realized. Motivated by these results, we outline how the scheme can be used for two specific quantum protocols, namely key distribution and coin tossing and discuss some of their advantages and disadvantages.Comment: For the conference proceedings of QCMC 200

    Polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength

    Get PDF
    We report the realization of a fiber coupled polarization entangled photon-pair source at 1310 nm based on a birefringent titanium in-diffused waveguide integrated on periodically poled lithium niobate. By taking advantage of a dedicated and high-performance setup, we characterized the quantum properties of the pairs by measuring two-photon interference in both Hong-Ou-Mandel and standard Bell inequality configurations. We obtained, for the two sets of measurements, interference net visibilities reaching nearly 100%, which represent important and competitive results compared to similar waveguide-based configurations already reported. These results prove the relevance of our approach as an enabling technology for long-distance quantum communication.Comment: 13 pages, 4 figures, to appear in New Journal of Physic

    Towards continuous-wave regime teleportation for light matter quantum relay stations

    Get PDF
    We report a teleportation experiment involving narrowband entangled photons at 1560 nm and qubit photons at 795 nm emulated by faint laser pulses. A nonlinear difference frequency generation stage converts the 795 nm photons to 1560 nm in order to enable interference with one photon out of the pairs, i.e., at the same wavelength. The spectral bandwidth of all involved photons is of about 25 MHz, which is close to the emission bandwidth of emissive quantum memory devices, notably those based on ensembles of cold atoms and rare earth ions. This opens the route towards the realization of hybrid quantum nodes, i.e., combining quantum memories and entanglement-based quantum relays exploiting either a synchronized (pulsed) or asynchronous (continuous- wave) scenario

    Temporal intensity correlation of light scattered by a hot atomic vapor

    Get PDF
    We present temporal intensity correlation measurements of light scattered by a hot atomic vapor. Clear evidence of photon bunching is shown at very short time-scales (nanoseconds) imposed by the Doppler broadening of the hot vapor. Moreover, we demonstrate that relevant information about the scattering process, such as the ratio of single to multiple scattering, can be deduced from the measured intensity correlation function. These measurements confirm the interest of temporal intensity correlation to access non-trivial spectral features, with potential applications in astrophysics

    Integrated optical source of polarization entangled photons at 1310 nm

    Get PDF
    We report the realization of a new polarization entangled photon-pair source based on a titanium-indiffused waveguide integrated on periodically poled lithium niobate pumped by a CW laser at 655nm655 nm. The paired photons are emitted at the telecom wavelength of 1310nm1310 nm within a bandwidth of 0.7nm0.7 nm. The quantum properties of the pairs are measured using a two-photon coalescence experiment showing a visibility of 85%. The evaluated source brightness, on the order of 10510^5 pairs s−1GHz−1mW−1s^{-1} GHz^{-1} mW^{-1}, associated with its compactness and reliability, demonstrates the source's high potential for long-distance quantum communication.Comment: There is a typing mistake in the previous version in the visibility equation. This mistake doesn't change the result

    Two-photon interference between disparate sources for quantum networking

    Get PDF
    Quantum networks involve entanglement sharing between multiple users. Ideally, any two users would be able to connect regardless of the type of photon source they employ, provided they fulfill the requirements for two-photon interference. From a theoretical perspective, photons coming from different origins can interfere with a perfect visibility, provided they are made indistinguishable in all degrees of freedom. Previous experimental demonstrations of such a scenario have been limited to photon wavelengths below 900 nm, unsuitable for long distance communication, and suffered from low interference visibility. We report two-photon interference using two disparate heralded single photon sources, which involve different nonlinear effects, operating in the telecom wavelength range. The measured visibility of the two-photon interference is 80+/-4%, which paves the way to hybrid universal quantum networks
    • …
    corecore