315 research outputs found

    Description of two-electron atoms with correct cusp conditions

    Get PDF
    New sets of functions with arbitrary large finite cardinality are constructed for two-electron atoms. Functions from these sets exactly satisfy the Kato's cusp conditions. The new functions are special linear combinations of Hylleraas- and/or Kinoshita-type terms. Standard variational calculation, leading to matrix eigenvalue problem, can be carried out to calculate the energies of the system. There is no need for optimization with constraints to satisfy the cusp conditions. In the numerical examples the ground state energy of the He atom is considered

    Neutron Removal from the Deformed Halo 31Ne Nucleus

    Get PDF
    Experimental data on Coulomb breakup and neutron removal indicate that 31Ne is one of the heaviest halo nuclei discovered so far. The possible ground state of 31Ne is either 3/2- coming from p-wave halo or 1/2+ from s-wave halo. In this work, we develop a treatable model to include deformed wave functions and a dynamical knockout formalism which includes the dependence on the nuclear orientation to study the neutron removal from 31Ne projectiles at energies around E=200 MeV/nucleon. A detailed account of the effects of deformation on cross sections and longitudinal momentum distributions is made. Our numerical analysis indicates a preference for the 31Ne ground state with spin parity 3/2-.Comment: 22 pages, 13 figures, accepted for publication in the Physical Review

    Shadow poles in a coupled-channel problem calculated with Berggren basis

    Get PDF
    In coupled-channel models the poles of the scattering S-matrix are located on different Riemann sheets. Physical observables are affected mainly by poles closest to the physical region but sometimes shadow poles have considerable effect, too. The purpose of this paper is to show that in coupled-channel problem all poles of the S-matrix can be calculated with properly constructed complex-energy basis. The Berggren basis is used for expanding the coupled-channel solutions. The location of the poles of the S-matrix were calculated and compared with an exactly solvable coupled-channel problem: the one with the Cox potential. We show that with appropriately chosen Berggren basis poles of the S-matrix including the shadow ones can be determined.Comment: 11 pages, 4 figures, 59 reference

    Radiative nucleon capture with quasi-separable potentials

    Get PDF
    We study radiative capture reactions using quasi-separable potentials. This procedure allows an easier treatment of non-local effects that can be extended to three-body problems. Using this technique, we calculate the neutron and proton radiative capture cross sections on 12^{12}C. The results obtained are shown to be in good agreement with the available experimental data.Comment: 12 pages, 4 figures, accepted for publication in Journal of Physics G: Nuclear and Particle Physic

    Nuclear three-body problem in the complex energy plane: Complex-Scaling-Slater method

    Full text link
    The physics of open quantum systems is an interdisciplinary area of research. The nuclear "openness" manifests itself through the presence of the many-body continuum representing various decay, scattering, and reaction channels. As the radioactive nuclear beam experimentation extends the known nuclear landscape towards the particle drip lines, the coupling to the continuum space becomes exceedingly more important. Of particular interest are weakly bound and unbound nuclear states appearing around particle thresholds. Theories of such nuclei must take into account their open quantum nature. To describe open quantum systems, we introduce a Complex Scaling (CS) approach in the Slater basis. We benchmark it with the complex-energy Gamow Shell Model (GSM) by studying energies and wave functions of the bound and unbound states of the two-neutron halo nucleus 6He viewed as an α\alpha+ n + n cluster system. In the CS approach, we use the Slater basis, which exhibits the correct asymptotic behavior at large distances. To extract particle densities from the back-rotated CS solutions, we apply the Tikhonov regularization procedure, which minimizes the ultraviolet numerical noise. While standard applications of the inverse complex transformation to the complex-rotated solution provide unstable results, the stabilization method fully reproduces the GSM benchmark. We also propose a method to determine the smoothing parameter of the Tikhonov regularization. The combined suite of CS-Slater and GSM techniques has many attractive features when applied to nuclear problems involving weakly-bound and unbound states. While both methods can describe energies, total widths, and wave functions of nuclear states, the CS-Slater method, if it can be applied, can provide an additional information about partial energy widths associated with individual thresholds.Comment: 15 pages, 16 figure

    Curvature Correction in the Strutinsky's Method

    Full text link
    Mass calculations carried out by Strutinsky's shell correction method are based on the notion of smooth single particle level density. The smoothing procedure is always performed using curvature correction. In the presence of curvature correction a smooth function remains unchanged if smoothing is applied. Two new curvature correction methods are introduced. The performance of the standard and new methods are investigated using harmonic oscillator and realistic potentials.Comment: 4 figures, submitted to Journal of Physics G: Nuclear and Particle Physic

    Shell corrections for finite depth potentials: Particle continuum effects

    Full text link
    Shell corrections of finite, spherical, one-body potentials are analyzed using a smoothing procedure which properly accounts for the contribution from the particle continuum, i.e., unbound states. Since the plateau condition for the smoothed single-particle energy seldom holds, a new recipe is suggested for the definition of the shell correction. The generalized Strutinsky smoothing procedure is compared with the results of the semi-classical Wigner-Kirkwood expansion. A good agreement has been found for weakly bound nuclei in the vicinity of the proton drip line. However, some deviations remain for extremely neutron-rich systems due to the pathological behavior of the semi-classical level density around the particle threshold.Comment: 18 pages, 8 figure
    • …
    corecore