9,110 research outputs found

    Pulmonary artery location during microgravity activity: Potential impact for chest-mounted Doppler during space travel

    Get PDF
    Doppler, or ultrasonic, monitoring for pain manifestations of decompression sickness (the bends) is accomplished by placing a sensor on the chest over the pulmonary artery and listening for bubbles. Difficulties have arisen because the technician notes that the pulmonary artery seems to move with subject movement in a one-g field and because the sensor output is influenced by only slight degrees of sensor movement. This study used two subjects and mapped the position of the pulmonary artery in one-g, microgravity, and two-g environments using ultrasound. The results showed that the pulmonary artery is fixed in location in microgravity and not affected by subject position change. The optimal position corresponded to where the Doppler signal is best heard with the subject in a supine position in a one-g environment. The impact of this result is that a proposed multiple sensor array on the chest proposed for microgravity use may not be necessary to monitor an astronaut during extravehicular activities. Instead, a single sensor of approximately 1 inch diameter and mounted in the position described above may suffice

    Verification of an altitude decompression sickness prevention protocol for Shuttle operations utilizing a 10.s psi pressure stage

    Get PDF
    Three test series involving 173-man tess were conducted to define and verify a pre-extravehicular activity (EVA) denitrogenation procedure that would provide acceptable protection against altitude decompression sickness while minimizing the required duration of oxygen (O2) prebreathe in the suit prior to EVA. The tests also addressed the safety, in terms of incidence of decompression sickness, of conducting EVA's on consecutive days rather than on alternate days. The tests were conducted in an altitude chamber, subjects were selected as representative of the astronaut population, and EVA periods were simulated by reducing the chamber pressure to suit pressure while the subjects breathed O2 with masks and worked at EVA representative work rates. A higher than anticipated incidence of both venous bubbles (55%) and symptoms (26%) was measured following all denitrogenation protocols in this test. For the most part, symptoms were very minor and stabilized, diminished, or disappeared in the six-hour tests. Instances of clear, possible, or potential systemic symptoms were encountered only after use of the unmodified 10.2 psi protocol and not after the modified 10.2 psi protocol, the 3.5-hour O2 prebreathed protocol, or the 4.0-hour O2 prebreathe protocol. The high incidence of symptoms is ascribed to the type and duration of exercise and the sensitivity of the reporting technique to minor symptoms. Repeated EVA exposures after only 17 hours did not increase symptom or bubble incidence

    Multi-level, multi-party singlets as ground states and their role in entanglement distribution

    Get PDF
    We show that a singlet of many multi-level quantum systems arises naturally as the ground state of a physically-motivated Hamiltonian. The Hamiltonian simply exchanges the states of nearest-neighbours in some network of qudits (d-level systems); the results are independent of the strength of the couplings or the network's topology. We show that local measurements on some of these qudits project the unmeasured qudits onto a smaller singlet, regardless of the choice of measurement basis at each measurement. It follows that the entanglement is highly persistent, and that through local measurements, a large amount of entanglement may be established between spatially-separated parties for subsequent use in distributed quantum computation.Comment: Corrected method for physical preparatio

    Electrodynamics and Time Orientability

    Get PDF

    Dynamics of Coupling Functions in Globally Coupled Maps: Size, Periodicity and Stability of Clusters

    Full text link
    It is shown how different globally coupled map systems can be analyzed under a common framework by focusing on the dynamics of their respective global coupling functions. We investigate how the functional form of the coupling determines the formation of clusters in a globally coupled map system and the resulting periodicity of the global interaction. The allowed distributions of elements among periodic clusters is also found to depend on the functional form of the coupling. Through the analogy between globally coupled maps and a single driven map, the clustering behavior of the former systems can be characterized. By using this analogy, the dynamics of periodic clusters in systems displaying a constant global coupling are predicted; and for a particular family of coupling functions, it is shown that the stability condition of these clustered states can straightforwardly be derived.Comment: 12 pp, 5 figs, to appear in PR

    Arrays of Cooper Pair Boxes Coupled to a Superconducting Reservoir: `Superradiance' and `Revival.'

    Full text link
    We consider an array of Cooper Pair Boxes, each of which is coupled to a superconducting reservoir by a capacitive tunnel junction. We discuss two effects that probe not just the quantum nature of the islands, but also of the superconducting reservoir coupled to them. These are analogues to the well-known quantum optical effects `superradiance,' and `revival.' When revival is extended to multiple systems, we find that `entanglement revival' can also be observed. In order to study the above effects, we utilise a highly simplified model for these systems in which all the single-electron energy eigenvalues are set to be the same (the strong coupling limit), as are the charging energies of the Cooper Pair Boxes, allowing the whole system to be represented by two large coupled quantum spins. Although this simplification is drastic, the model retains the main features necessary to capture the phenomena of interest. Given the progress in superconducting box experiments over recent years, it is possible that experiments to investigate both of these interesting quantum coherent phenomena could be performed in the forseeable future.Comment: 23 pages, 5 figures Clarifications made as recommended by refere

    Positron Emission Tomography Score Has Greater Prognostic Significance Than Pretreatment Risk Stratification in Early-Stage Hodgkin Lymphoma in the UK RAPID Study.

    Get PDF
    PURPOSE: Accurate stratification of patients is an important goal in Hodgkin lymphoma (HL), but the role of pretreatment clinical risk stratification in the context of positron emission tomography (PET) -adapted treatment is unclear. We performed a subsidiary analysis of the RAPID trial to assess the prognostic value of pretreatment risk factors and PET score in determining outcomes. PATIENTS AND METHODS: Patients with stage IA to IIA HL and no mediastinal bulk underwent PET assessment after three cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine; 143 PET-positive patients (PET score, 3 to 5) received a fourth doxorubicin, bleomycin, vinblastine, and dacarbazine cycle and involved-field radiotherapy, and 419 patients in complete metabolic remission were randomly assigned to receive involved-field radiotherapy (n = 208) or no additional treatment (n = 211). Cox regression was used to investigate the association between PET score and pretreatment risk factors with HL-specific event-free survival (EFS). RESULTS: High PET score was associated with inferior EFS, before (P .4). CONCLUSION: In RAPID, a positive PET scan did not carry uniform prognostic weight; only a PET score of 5 was associated with inferior outcomes. This suggests that in future trials involving patients without B symptoms or mediastinal bulk, a score of 5 rather than a positive PET result should be used to guide treatment escalation in early-stage HL

    Charge Transport Processes in a Superconducting Single-Electron Transistor Coupled to a Microstrip Transmission Line

    Full text link
    We have investigated charge transport processes in a superconducting single-electron transistor (S-SET) fabricated in close proximity to a two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterostructure. The macroscopic bonding pads of the S-SET along with the 2DEG form a microstrip transmission line. We observe a variety of current-carrying cycles in the S-SET which we attribute to simultaneous tunneling of Cooper pairs and emission of photons into the microstrip. We find good agreement between these experimental results and simulations including both photon emission and photon-assisted tunneling due to the electromagnetic environment.Comment: 4 pages, 4 figures, REVTeX
    • ā€¦
    corecore