1,809 research outputs found

    Alterations in electrodermal activity and cardiac parasympathetic tone during hypnosis

    Get PDF
    Exploring autonomic nervous system (ANS) changes during hypnosis is critical for understanding the nature and extent of the hypnotic phenomenon and for identifying the mechanisms underlying the effects of hypnosis in different medical conditions. To assess ANS changes during hypnosis, electrodermal activity and pulse rate variability (PRV) were measured in 121 young adults. Participants either received hypnotic induction (hypnosis condition) or listened to music (control condition), and both groups were exposed to test suggestions. Blocks of silence and experimental sound stimuli were presented at baseline, after induction, and after de-induction. Skin conductance level (SCL) and high frequency (HF) power of PRV measured at each phase were compared between groups. Hypnosis decreased SCL compared to the control condition; however, there were no group differences in HF power. Furthermore, hypnotic suggestibility did not moderate ANS changes in the hypnosis group. These findings indicate that hypnosis reduces tonic sympathetic nervous system activity, which might explain why hypnosis is effective in the treatment of disorders with strong sympathetic nervous system involvement, such as rheumatoid arthritis, hot flashes, hypertension, and chronic pain. Further studies with different control conditions are required to examine the specificity of the sympathetic effects of hypnosis

    Evolutionary trees: an integer multicommodity max-flow-min-cut theorem

    Get PDF
    In biomathematics, the extensions of a leaf-colouration of a binary tree to the whole vertex set with minimum number of colour-changing edges are extensively studied. Our paper generalizes the problem for trees; algorithms and a Menger-type theorem are presented. The LP dual of the problem is a multicommodity flow problem, for which a max-flow-min-cut theorem holds. The problem that we solve is an instance of the NP-hard multiway cut problem

    Evaluation of a locally homogeneous flow model of spray combustion

    Get PDF
    A model of spray combustion which employs a second-order turbulence model was developed. The assumption of locally homogeneous flow is made, implying infinitely fast transport rates between the phase. Measurements to test the model were completed for a gaseous n-propane flame and an air atomized n-pentane spray flame, burning in stagnant air at atmospheric pressure. Profiles of mean velocity and temperature, as well as velocity fluctuations and Reynolds stress, were measured in the flames. The predictions for the gas flame were in excellent agreement with the measurements. The predictions for the spray were qualitatively correct, but effects of finite rate interphase transport were evident, resulting in a overstimation of the rate development of the flow. Predictions of spray penetration length at high pressures, including supercritical combustion conditions, were also completed for comparison with earlier measurements. Test conditions involved a pressure atomized n-pentane spray, burning in stagnant air at pressures of 3, 5, and 9 MPa. The comparison between predictions and measurements was fair. This is not a very sensitive test of the model, however, and further high pressure experimental and theoretical results are needed before a satisfactory assessment of the locally homogeneous flow approximation can be made

    Eccentricity Sum in Trees

    Get PDF
    The eccentricity of a vertex, eccT(v)=maxu∈TdT(v,u), was one of the first, distance-based, tree invariants studied. The total eccentricity of a tree, Ecc(T), is the sum of eccentricities of its vertices. We determine extremal values and characterize extremal tree structures for the ratios Ecc(T)/eccT(u), Ecc(T)/eccT(v), eccT(u)/eccT(v), and eccT(u)/eccT(w) where u,w are leaves of T and v is in the center of T. In addition, we determine the tree structures that minimize and maximize total eccentricity among trees with a given degree sequence
    corecore