102 research outputs found
Asymptotic equivalence of homogenisation procedures and fine-tuning of continuum theories
Long-wave models obtained in the process of asymptotic homogenisation of structures with a characteristic length scale are known to be non-unique. The term non-uniqueness is used here in the sense that various homogenisation strategies may lead to distinct governing equations that usually, for a given order of the governing equation, approximate the original problem with the same asymptotic accuracy. A constructive procedure presented in this paper generates a class of asymptotically equivalent long-wave models from an original homogenised theory. The described non-uniqueness manifests itself in the occurrence of additional parameters characterising the model. A simple problem of long-wave propagation in a regular one-dimensional lattice structure is used to illustrate important criteria for selecting
these parameters. The procedure is then applied to derive a class of continuum theories for a two-dimensional square array of particles. Applications to asymptotic structural theories are also discussed. In particular, we demonstrate how to improve the governing equation for the Rayleigh-Love rod and explain the reasons for the well-known numerical accuracy of the Mindlin plate theory
A novel approach for the lifetime prediction and structural health monitoring of concrete sewer systems exposed to biogenic sulphide corrosion
A novel, combined experimental-modelling approach is presented for the estimation of the corrosion depth, load bearing capacity and lifetime of unreinforced concrete sewer pipes exposed to prolonged biogenic sulphide corrosion. The biogenic sulphide corrosion process is mimicked through two types of representative chemical experiments, namely: (i) long-term experiments performed under moderately controlled pH conditions, where dry-cast concrete cube samples are exposed to monthly refreshed sulphuric acid solutions with initial pH values of 3, 2 and 1 for a period of 12 months, and (ii) short-term experiments carried out under highly controlled pH conditions, in which dry-cast concrete disk samples are subjected to sulphuric acid solutions with almost constant pH values of 2, 1 and 0.5 for a period of two months. By applying X-ray diffraction, optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy analyses, insight into the micro-scale morphology and elemental composition of the corrosion profile is obtained. In addition, the corrosion front and depth characteristics are measured by conducting phenolphthalein tests and analyses of surface colour and texture of macro-scale samples. From the experimental results, the time course of the corrosion depth is calibrated with a model for sulphate attack under a constant pH level. The model formulation is combined with detailed finite element method results from the literature to predict the long-term load bearing capacity of a concrete sewer pipe. The model is subsequently generalised for sulphate corrosion under a varying pH level. When combined with the installation of pH measuring devices on the inside of sewer pipes, the current engineering model may serve as an excellent practical tool for continuously monitoring the structural health and predicting the lifetime of in-situ sewer systems subject to sulphate attack under random acidity fluctuations
Influence of Rotations on the Critical State of Soil Mechanics
The ability of grains to rotate can play a crucial role on the collective
behavior of granular media. It has been observed in computer simulations that
imposing a torque at the contacts modifies the force chains, making support
chains less important. In this work we investigate the effect of a gradual
hindering of the grains rotations on the so-called critical state of soil
mechanics. The critical state is an asymptotic state independent of the initial
solid fraction where deformations occur at a constant shear strength and
compactness. We quantify the difficulty to rotate by a friction coefficient at
the level of particles, acting like a threshold. We explore the effect of this
particle-level friction coefficient on the critical state by means of molecular
dynamics simulations of a simple shear test on a poly-disperse sphere packing.
We found that the larger the difficulty to rotate, the larger the final shear
strength of the sample. Other micro-mechanical variables, like the structural
anisotropy and the distribution of forces, are also influenced by the
threshold. These results reveal the key role of rotations on the critical
behavior of soils and suggest the inclusion of rotational variables into their
constitutive equations.Comment: 9 pages, 8 figures, Accepted for publication in Computer Physics
Communication
Recommended from our members
Crack channelling mechanisms in brittle coating systems under moisture or temperature gradients
Abstract: Crack channelling is predicted in a brittle coating-substrate system that is subjected to a moisture or temperature gradient in the thickness direction. Competing failure scenarios are identified, and are distinguished by the degree to which the coating-substrate interface delaminates, and whether this delamination is finite or unlimited in nature. Failure mechanism maps are constructed, and illustrate the sensitivity of the active crack channelling mechanism and associated channelling stress to the ratio of coating toughness to interfacial toughness, to the mismatch in elastic modulus and to the mismatch in coefficient of hygral or thermal expansion. The effect of the ratio of coating to substrate thickness upon the failure mechanism and channelling stress is also explored. Closed-form expressions for the steady-state delamination stress are derived, and are used to determine the transition value of moisture state that leads to unlimited delamination. Although the results are applicable to coating-substrate systems in a wide range of applications, the study focusses on the prediction of cracking in historical paintings due to indoor climate fluctuations, with the objective of helping museums developing strategies for the preservation of art objects. For this specific application, crack channelling with delamination needs to be avoided under all circumstances, as it may induce flaking of paint material. In historical paintings, the substrate thickness is typically more than ten times larger than the thickness of the paint layer; for such a system, the failure maps constructed from the numerical simulations indicate that paint delamination is absent if the delamination toughness is larger than approximately half of the mode I toughness of the paint layer. Further, the transition between crack channelling with and without delamination appears to be relatively insensitive to the mismatch in the elastic modulus of the substrate and paint layer. The failure maps developed in this work may provide a useful tool for museum conservators to identify the allowable indoor humidity and temperature fluctuations for which crack channelling with delamination is prevented in historical paintings
Crack channelling mechanisms in brittle coating systems under moisture or temperature gradients
Abstract: Crack channelling is predicted in a brittle coating-substrate system that is subjected to a moisture or temperature gradient in the thickness direction. Competing failure scenarios are identified, and are distinguished by the degree to which the coating-substrate interface delaminates, and whether this delamination is finite or unlimited in nature. Failure mechanism maps are constructed, and illustrate the sensitivity of the active crack channelling mechanism and associated channelling stress to the ratio of coating toughness to interfacial toughness, to the mismatch in elastic modulus and to the mismatch in coefficient of hygral or thermal expansion. The effect of the ratio of coating to substrate thickness upon the failure mechanism and channelling stress is also explored. Closed-form expressions for the steady-state delamination stress are derived, and are used to determine the transition value of moisture state that leads to unlimited delamination. Although the results are applicable to coating-substrate systems in a wide range of applications, the study focusses on the prediction of cracking in historical paintings due to indoor climate fluctuations, with the objective of helping museums developing strategies for the preservation of art objects. For this specific application, crack channelling with delamination needs to be avoided under all circumstances, as it may induce flaking of paint material. In historical paintings, the substrate thickness is typically more than ten times larger than the thickness of the paint layer; for such a system, the failure maps constructed from the numerical simulations indicate that paint delamination is absent if the delamination toughness is larger than approximately half of the mode I toughness of the paint layer. Further, the transition between crack channelling with and without delamination appears to be relatively insensitive to the mismatch in the elastic modulus of the substrate and paint layer. The failure maps developed in this work may provide a useful tool for museum conservators to identify the allowable indoor humidity and temperature fluctuations for which crack channelling with delamination is prevented in historical paintings
Frictionless bead packs have macroscopic friction, but no dilatancy
The statement of the title is shown by numerical simulation of homogeneously
sheared packings of frictionless, nearly rigid beads in the quasistatic limit.
Results coincide for steady flows at constant shear rate γ in the
limit of small γ and static approaches, in which packings are equilibrated
under growing deviator stresses. The internal friction angle ϕ, equal to
5.76 0.22 degrees in simple shear, is independent on the average pressure
P in the rigid limit. It is shown to stem from the ability of stable
frictionless contact networks to form stress-induced anisotropic fabrics. No
enduring strain localization is observed. Dissipation at the macroscopic level
results from repeated network rearrangements, like the effective friction
of a frictionless slider on a bumpy surface. Solid fraction Φ remains
equal to the random close packing value ≃ 0.64 in slowly or statically
sheared systems. Fluctuations of stresses and volume are observed to regress in
the large system limit, and we conclude that the same friction law for simple
shear applies in the large psystem limit if normal stress or density is
externally controlled. Defining the inertia number as I = γ m/(aP),
with m the grain mass and a its diameter, both internal friction
coefficient ∗ = tan ϕ and volume 1/Φ increase as
powers of I in the quasistatic limit of vanishing I, in which all mechanical
properties are determined by contact network geometry. The microstructure of
the sheared material is characterized with a suitable parametrization of the
fabric tensor and measurements of connectivity and coordination numbers
associated with contacts and near neighbors.Comment: 19 pages. Additional technical details may be found in v
Dynamic Properties of Mixtures of Waste Materials
The stockpiling of waste mining by-products, i.e. steel furnace slag (SFS) and coal wash (CW) has brought significant environmental hazard and attracted research attention to reuse them in a more innovative way. In recent years, SFS+CW mixtures have been successfully applied in geotechnical projects, while the inclusion of rubber crumb (RC, from waste tyres) will extend them into dynamic projects. Thus the investigation of the geotechnical properties of SFS+CW+RC mixtures under dynamic loading is in urgent need. In this paper, the dynamic properties (i.e. shear modulus and damping ratio) have been explored based on extensive drained cyclic triaxial tests. The influences of number of loading cycles, RC contents, shear strain level, and the effective confining pressure have been presented. The dynamic properties of SFS+CW +RC mixtures presented in this paper will be essential for the application of the mixtures in the seismic isolation projects or railway foundation
Solid behavior of anisotropic rigid frictionless bead assemblies
We investigate the structure and mechanical behavior of assemblies of
frictionless, nearly rigid equal-sized beads, in the quasistatic limit, by
numerical simulation. Three different loading paths are explored: triaxial
compression, triaxial extension and simple shear. Generalizing recent results
[1], we show that the material, despite rather strong finite sample size
effects, is able to sustain a finite deviator stress in the macroscopic limit,
along all three paths, without dilatancy. The shape of the yield surface is
adequately described by a Lade-Duncan (rather than Mohr-Coulomb) criterion.
While scalar state variables keep the same values as in isotropic systems,
fabric and force anisotropies are each characterized by one parameter and are
in one-to-one correspondence with principal stress ratio along all three
loading paths.The anisotropy of the pair correlation function extends to a
distance between bead surfaces on the order of 10% of the diameter. The tensor
of elastic moduli is shown to possess a nearly singular, uniaxial structure
related to stress anisotropy. Possible stress-strain relations in monotonic
loading paths are also discussed
- …