3,475 research outputs found
On improving the iterative convergence properties of an implicit approximate-factorization finite difference algorithm
The iterative convergence properties of an approximate-factorization implicit finite-difference algorithm are analyzed both theoretically and numerically. Modifications to the base algorithm were made to remove the inconsistency in the original implementation of artificial dissipation. In this way, the steady-state solution became independent of the time-step, and much larger time-steps can be used stably. To accelerate the iterative convergence, large time-steps and a cyclic sequence of time-steps were used. For a model transonic flow problem governed by the Euler equations, convergence was achieved with 10 times fewer time-steps using the modified differencing scheme. A particular form of instability due to variable coefficients is also analyzed
Inductive algebras and homogeneous shifts
Inductive algebras for the irreducible unitary representations of the
universal cover of the group of unimodular two by two matrices are classified.
The classification of homogeneous shift operators is obtained as a direct
consequence. This gives a new approach to the results of Bagchi and Misra
Geodynamo and mantle convection simulations on the Earth Simulator using the Yin-Yang grid
We have developed finite difference codes based on the Yin-Yang grid for the
geodynamo simulation and the mantle convection simulation. The Yin-Yang grid is
a kind of spherical overset grid that is composed of two identical component
grids. The intrinsic simplicity of the mesh configuration of the Yin-Yang grid
enables us to develop highly optimized simulation codes on massively parallel
supercomputers. The Yin-Yang geodynamo code has achieved 15.2 Tflops with 4096
processors on the Earth Simulator. This represents 46% of the theoretical peak
performance. The Yin-Yang mantle code has enabled us to carry out mantle
convection simulations in realistic regimes with a Rayleigh number of
including strongly temperature-dependent viscosity with spatial contrast up to
.Comment: Plenary talk at SciDAC 200
On applications of chimera grid schemes to store separation
A finite difference scheme which uses multiple overset meshes to simulate the aerodynamics of aircraft/store interaction and store separation is described. In this chimera, or multiple mesh, scheme, a complex configuration is mapped using a major grid about the main component of the configuration, and minor overset meshes are used to map each additional component such as a store. As a first step in modeling the aerodynamics of store separation, two dimensional inviscid flow calculations were carried out in which one of the minor meshes is allowed to move with respect to the major grid. Solutions of calibrated two dimensional problems indicate that allowing one mesh to move with respect to another does not adversely affect the time accuracy of an unsteady solution. Steady, inviscid three dimensional computations demonstrate the capability to simulate complex configurations, including closely packed multiple bodies
Bose-Einstein Condensation of Long-Lifetime Polaritons in Thermal Equilibrium
Exciton-polaritons in semiconductor microcavities have been used to
demonstrate quantum effects such as Bose-Einstein condensation, superfluity,
and quantized vortices. However, in these experiments, the polaritons have not
reached thermal equilibrium when they undergo the transition to a coherent
state. This has prevented the verification of one of the canonical predictions
for condensation, namely the phase diagram. In this work, we have created a
polariton gas in a semiconductor microcavity in which the quasiparticles have a
lifetime much longer than their thermalization time. This allows them to reach
thermal equilibrium in a laser-generated confining trap. Their energy
distributions are well fit by equilibrium Bose-Einstein distributions over a
broad range of densities and temperatures from very low densities all the way
up to the threshold for Bose-Einstein condensation. The good fits of the
Bose-Einstein distribution over a broad range of density and temperature imply
that the particles obey the predicted power law for the phase boundary of
Bose-Einstein condensation
The autophagic machinery is necessary for removal of cell corpses from the developing retinal neuroepithelium
12 páginas, 8 figuras -- PAGS nros. 1279-1290Autophagy is a homoeostatic process necessary for the clearance of damaged or superfluous proteins and organelles. The recycling of intracellular constituents also provides energy during periods of metabolic stress, thereby contributing to cell viability. In addition, disruption of autophagic machinery interferes with embryonic development in several species, although the underlying cellular processes affected remain unclear. Here, we investigate the role of autophagy during the early stages of chick retina development, when the retinal neuroepithelium proliferates and starts to generate the first neurons, the retinal ganglion cells. These two developmental processes are accompanied by programmed cell death. Upon treatment with the autophagic inhibitor 3-methyladenine, retinas accumulated numerous TdT-mediated dUTP nick-end labelling-positive cells that correlated with a lack of the ‘eat-me’ signal phosphatidylserine (PS). In consequence, neighbouring cells did not engulf apoptotic bodies and they persisted as individual cell corpses, a phenotype that was also observed after blockade of phagocytosis with phospho-L-Serine. Supplying the retinas with methylpyruvate, a cell-permeable substrate for ATP production, restored ATP levels and the presentation of PS at the cell surface. Hence, engulfment and lysosomal degradation of apoptotic bodies were also re-established. Together, these data point to a novel role for the autophagic machinery during the development of the central nervous systemThis research was supported by grants from the Spanish Ministerio de Educación y Ciencia (BFU2006-00508 to PB and SAF2007-66175 to EJdlR) and Comunidad de Madrid (CCG06-CSIC/SAL-0821 to PB). MAM is a FPU Fellow and PB is a Ramón y Cajal Fellow (both Ministerio de Educación y Ciencia programs)Peer reviewe
Observation of quantum depletion in a nonequilibrium exciton-polariton condensate
The property of superfluidity, first discovered in liquid 4He, is closely
related to Bose-Einstein condensation (BEC) of interacting bosons. However,
even at zero temperature, when one would expect the whole bosonic quantum
liquid to become condensed, a fraction of it is excited into higher momentum
states via interparticle interactions and quantum fluctuations -- the
phenomenon of quantum depletion. Quantum depletion of weakly interacting atomic
BECs in thermal equilibrium is well understood theoretically but is difficult
to measure. This is even more challenging in driven-dissipative systems such as
exciton-polariton condensates(photons coupled to electron-hole pairs in a
semiconductor), since their nonequilibrium nature is predicted to suppress
quantum depletion. Here, we observe quantum depletion of an optically trapped
high-density exciton-polariton condensate by directly detecting the spectral
branch of elementary excitations populated by this process. Analysis of the
population of this branch in momentum space shows that quantum depletion of an
exciton-polariton condensate can closely follow or strongly deviate from the
equilibrium Bogoliubov theory, depending on the fraction of matter (exciton) in
an exciton-polariton. Our results reveal the effects of exciton-polariton
interactions beyond the mean-field description and call for a deeper
understanding of the relationship between equilibrium and nonequilibrium BECs.Comment: 18 pages, 5 figures, with supplementary informatio
Import of ADP/ATP carrier into mitochondria
We have identified the yeast homologue of Neurospora crassa MOM72, the mitochondrial import receptor for the ADP/ATP carrier (AAC), by functional studies and by cDNA sequencing. Mitochondria of a yeast mutant in which the gene for MOM72 was disrupted were impaired in specific binding and import of AAC. Unexpectedly, we found a residual, yet significant import of AAC into mitochondria lacking MOM72 that occurred via the receptor MOM19. We conclude that both MOM72 and MOM19 can direct AAC into mitochondria, albeit with different efficiency. Moreover, the precursor of MOM72 apparently does not require a positively charged sequence at the extreme amino terminus for targeting to mitochondria
Superlinear Increase of Photocurrent due to Stimulated Scattering into a Polariton Condensate
We show that when a monopolar current is passed through an n-i-n structure,
superlinear photocurrent response occurs when there is a polariton condensate.
This is in sharp contrast to the previously observed behavior for a standard
semiconductor laser. Theoretical modeling shows that this is due to a
stimulated exciton-exciton scattering process in which one exciton relaxes into
the condensate, while another one dissociates into an electron-hole pair.Comment: 17 pages with 10 figure
- …
