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Summary

A linite-difference scheme which uses multiple overset meshes to simulate the aerodynamics of aircraft, store interaction
and store separation is described. In this chimera, or multiple mesh, scheme, a complex configuration is inapped using a
major grid ahout the main companent of the configuration, and minor overset meshes are used to map each additional
component such as a store  As a first step in modeling the acrodynamics of store separation. two-dimensional inviscid flow
calculations have heen carried out in which one of the minor meshes is allowed to move with respect to the major grid
Solutions of calibrated two-dimensional probleme indicate that allowing one niesh to move with respect to another doex not
adversely aflect the time accuracy of an unsteady solution. Steady, inviscid three-dimensional computations demonstrate
the capability to sinwlate comiplex configurations, including closely-packed mulitiple bodies.

L. Introduction

Today's high-speed airceaflt are intended to carry atores either externally or <emi-submerged, and are rated ax to
their ability to deliver these stores Lo their targets reliably and accurately, without loss of aireraft performance and agility.

However, store-induced aerodynamic drag can significantly downgrade aircraft performance, while acrody namic interaction
tay canse the released stores to seatter, run into each other, or impact the aircraft 1t is necessary, then, to develop reliable

wethods 10 predict the acrody namics of the store/airframe interaction.

It i« diflicult to test various carriage configurations and releases of stares in the windtunnel, becane  stores cannot
he freely released, or, if sting mounted, can not move with complete freedom. Moreover, scaling effee’ < rom the sodel
to true size are diflicult to overcome  Flight testing is an option available for aitcraft/store configurations, but without
analytical and/or experimental results to rely on, flight tests can be unpredictable, expensive, and dangerons.

The development of a amnerical simmlation capahility using finite-difference techniques would aid in the de<ign and
testing of aircraft carrying slores. A major abstacle to a computational approach, however, is the difliculty in developing
effective disceetization processes for complex confignrations. While a single global mzesh about an aircealt with stores can
be generated, it is unlikely to be computationally eflicient, especially for viscous flow simulation. Moreover, allowing the
slores o move would require a new grid to be generated after each time step.

In liew of using a <ingle mesh for complex body configurations, multiple meshes can be used to map the overall
configuration. The use of a multiple grid approach can vield better grid resolution, simplify the application of boundary
conditions, and easc the task of grid generation. Some of the disadvantages to multiple meshes are that the flow solver
must he modified, and that the bookkeeping that tracks the relationships among the meshes can be complicated. Twa of
the multiple niesh techniques currently emphasized in the literature are patched grids (refs. 1-3) and overset grids (refs.
4-9), sithough both could be considered as special cases of a general multiple mesh approach.

We have been working with a chimera grid scheme which uses overt st meshes. In this approach. minor grids are
overset on a major grid to completely model a configueation. These minor meshes are generated somewhat independently
and are overset on the major grid without requiring any special mesh boundaries. As such, the minor meshes can be
allowed to move with respect Lo the major grid.

The purpose of this paper is to demonstrate the feasibility of this chimera scheme for future application to the
problem of aircraft/store interaction and separation. Unsteady flow results have been computed in two ditiensions, where
one component in & multiple mesh system has been moved with respect to the fixed system. In three dimensions, steady,
inviscid solutions have been obtained for a generic wing/hody/tail configuration, and for closely-packed multiple bodics
that can ultimately be run as a TER (triple cjection rack) configuration.

A brief deacription of the overset chimera grid package is given in section II. Section 1 contains information about the
flow solvers used in both the two- and three-dimension applications. Details about the combined flow-solver/grid-package
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codes are given in section IV. The results are sliown in section V, and concluding remarks follow in section VI.
il.  Chimera Grid Management Scheme

Our mesh scheme in one in which a major grid stretches to the far field and is often generated about a main body
clement such as a wing. Minor grids are then overset on the major grid so as to resolve secondary features of the
configuration such as stores, nacelles, or flaps. In general, the minor grids are overset on top of the major grid without
requiring the mesh boundaries to join in any special way. With the use of such an overset mesh system the task of grid
generation is greatly simplified because individual grids can be generated independently (provided they resolve the flow
gradients) and then superimposed to form the overall mesh configuration. In this way, one can build up a grid system to
treat complex configurations and avoid severe mesh distortion.

To illustrate the chimera grid technique an airfoil with a detached flap tucked underneath it is shown meshed in figure
1 using overset grids. Both the aitfoil and the Aap are shown with body-conforming O-grids. with the minor flap grid
averset on the major, or airfoil, grid Since the flap is an impermeable body, the points of the major grid that fall within
the fap (or a curve of the minor grid that circumseribes the flap) are excluded or blanked from the flow field solution
The detailed view of figure 1 shows the pointa (marked with filled circles) on the major grid that are excluded from the
solution because of the presence of the flap. The boundary of this “hole” in the major grid becomes the first of two
interface boundaries that arise because of the use of oversct meshes. Data for this hole boundary must be supplied from
the salution contained on the overset Rap grid. The outer boundary of the minor grid forms the second interface in this
problemn, and nearby points from the major grid are used to supply flow values along the minor grid outer houndary. The
flow ficld solutions on each grid are connected by transferring boundary information across these two interfaces.

In the current codes, cach grid is independently advanced in time. The houndary information, however, is not
tranaferred simultaneously, but is updated with each time step in the following manner. Using figure 2 for illustration,
the flow field on the major grid is time advanced using boundary data at time level n  The minor grid solution is then
advanced with the Rap surface and its outer boundary also held at time n. Then the Row variables at the hole boundary
are updated with the information just selved for on the minor mesh (the dotted line on the minor grid). The effect of
the Nap is now imposed on the airfoil solution. The Aow variables at the outer boundary of the minor grid are likewise
updated with the information froin the major grid (the dotted line), so that the flap feels the effect of the airfoil. Finally,
the body surface and far field boundaries are updated in the usual manner.

Al of the multiple grid bookkeeping (the determination of the interface boundaries and communication controls) is
done sutomatically by the chimera grid management package. Once the grids are input to the code. the chimera grid
package defines the relationships amoung the meshes, exciudes or blanks out the points within another hody to form holes,
and finds the neathy points to he used for the transfer of infomation across the interfaces. Details about the hookkeeping
procedures can be found in references 6-9.

Because of the overset grid technique, grids ean he gencrated about relatively complex configurations. Because of the
automatic chimera grid manangement package, one or more grids can move with respect to each other.

11I.  The Flow Solvers

The overaet mesh scheme has been combined with implicit approximate factorization algorithms (refs. 10, 11, 12) for
solving the Euler equations in hoth two and three dimensions (refs. 6-9). However, calculations in which one hody moves
with respect to another have only been carried out in two-dimensions.

In generalized curvilinear conrdinates and nondimensionalized variables, the three-dimensional Euler equations in
strong conservation law form can be wrillen as

Q+ak +3,F+8C -0, (1a)
’ U
” . nl +6p
Q=J V||, E=J0"'| swU+b&p |.
w sl + Eop
e {e+p)U - &p
14 rig
sV 4 nep WV 4+ Gp
F=J" mwVanp |, C=ud'| swWagp |, {1b)
oV 4 nep W + ¢p
(e+p)V -np (e +p)W - qp

where U, V, and W are unacaled contravariant velocities, for example,
U= +ant vt ew.
The metric Jacoblan is cakulated as
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and the metric terms £,, £, etc are obtained from z4, z,, etc. ir the usual way.

An implicit approximate-factorization Anite-difference scheme for the three dimensional equations (1) can be written

(F + K6A™)(T + héy Bm) (I + h8,CT)AQ™ = —h(8¢E™ + 6,F" + §,G™), (3)

where AQ™ = Q"*' - Q" and h = At for first-order time accuracy. The three-dimensional flux Jacobian metrics AB.C
are defined in reference 12.

The spatial derivative operators d¢, d,, 11d 8, are approximated with second-order accurate central finite-difference
operators. On the implicit side of equation 3), the second-order central diflerences produce block-tridiagonal matrix
operators (1 + hégA™), (I + k6,3™), and (I h6.C™), which must be inverted sequentially to obtain AQ™  Additional
details about the three-dimensional Euler code are given in references 9, 10, and 12.

In this initial rescarch phase of the developing of a two-dimensional unsteady moving body code, a diagonalization
version of the approximate factorization algorithm was used in a deliberate trade off of time accuracy for reduced com-
putational work. By diagonalizing the block tridiagonal operators into scalar operators, the resulting systern can be more
efficiently solved. The “diagonalized” form of the algorithm is

Tell + hEeAFIN(T + hE,ARIT1AQ™ = R, (1)

with
’ Ag = Ty 'ATg and A, =T, 'BT,, (5)

and N T, 'T,. These matrices are shown in the references 10 and 13. This forin of the algorithm is at best first
order accurate in time, as the eigenvector matrices are functions of £ and n. With the addition of numerical dissipation
terms, this diagonalized algorithm reduces the block tridiagonal inversion to a series of 4r4 matrix multiplics and scalar
tridiagonal or (depending on the dissipation terms, see refcrence 14) pentadiagonal inversions.

1V. Flow Solver - Chimera Interactions

As mentioned in the introduction, s flow solver must be modified to account for the use of multiple meshea and the
“holes”™ in the grids that result because grid points of one mesh can fall within the body boundaries of another. These
hole points must be blanked or excluded froin the flow field solution.

Twa minor modifications have been made 10 the flow solver to acommodate new houndary conditions and the blanked
or excluded points in the meshes. A modular houndary condition routine was developed 1o act up the honndary values for
each mesh, hecanse different meshee in the same configuration might require different houndary treatment. For example,
the k1 linc in & major, or flow field, grid might represent a free stream boundary, while the & | line on the minor grid
might represent a solid body boundary. Interpolation and update routines were also added for the tranafer of information
across the various mesh interfaces .

The main change in the flow algorithm itself is the treatment of the hole boundaries. The hole information from the
chimera grid package is stored in an array, here called IBLANK, which is defined for each point on each grid as

1. il & point is not blanked; )

IBLANK = {o, if & point is blanked.

In the flow solver, each element in the left-hand-side matrix and right-hand-side vector is multiplied by the appropriate
IBLANK value before the matrix is inverted. Using a simple 828 tridiagenal system for illusteation with points § and &
blanked, the resulting equation set would look like

b o AQy ry
e b o AQ, ry
e b ¢ AQs ry
] aQ.| _ O
] AQa 0" L
a b e AQn fa
e b e AQy ry
s bJ LAQs ™

with no changes computed for AQq or AQs. The blanked values Q:" and QF 1 are updated in the interpolation routine
outside of the flow solver. Pentadiagonal inatrices are treated in a similar manner. With this approach, no special rontines
or logic tests are required to exclude the hlanked points from the flow field solution.

Unsteady Modifications. In steady-state applications of the overset grids, the flow salver and the chimera grid manage-
ment package were run independently. The grid package was run once, and the IBLANK array and transfer information
arrays were pasaed on (o the flow solver. For an unsteady, moving body case where one body is free to move relative to
a necond, the grid package must be called each time the body and its grid move. For these unateady cases, care must be
taken to update the interface boundaries in a time-accurate fashion.
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In order to simulate, for example, the low about a wing with a detached moving store beneath it, the main routine of
the unsteady code was constructed in a modular fashion with four main units that are called each time step These units
are: the chimera grid management package,  flow solver routine adapted for multiple meshes, a trajectory routine (for the
present, a simple, predetermined motion), and a package to update the interface boundaries caused by the overset meshea.
Each of these is run s. mewhat independently, with interactions among them limited to passing arrays of information
With this modular approach, it is easy to replace one unit with another, suitably modified program without affecting the
rest of the unsteady code.

Figure 3 illustrates the interactions among the four modules. At the beginning of each new time step, the trajectory
routine is called to calculate the new spatial position of the minor grid The chimera grid management package redefines
the relationship of the grids by finding new blanked points and lucating and storing new nearby points to update the
interface houndaries. If necessary, new grid metrics are formed. The flow field solution for each mesh is then advanced to
the new time level, n + 1, and the interface boundaries are updated for the next time step. To facilitate output of interim
flow field solutions, all information at the start of the sequence is at the old time level, and, by the end of the sequence,
all information has been updated to the new time step values.

V. Results

The overset grid procedure has been used o compute two-dimensional inviscid lows about geonetries where one
body is moved with respect 1o the rest of the configuration. it has also been applied to steady, inviscid three-dimensional
complex configurations. To verify the two-dimensional overset mesh code in the time-dependent mode, the transonic flow
about an airfoil undergoing an oscillating plunge was run. A multiple mesh case with a minor O-grid wrapped around a
NACA 647010 airfoil overset on a Cartesian major grid is compared to a single mesh case with a larger O-grid ahout the
same airfoil. The airfoil and its mesh move with a velocity of

Yo = — Awcos(w"), (8)

where
A =0.0436chord, k= 4, and w = kU, /chord.

The maximum upward excursion of the airfoil from zero is = 4% of the airfoil chord. Time histories of the lift coeflicient
are shown in figure 4. Each run was started from steady state (Mo, = 0.8, a - 0"). The 720 step per cycle single mesh
curve shown in figure 4 is considered to he the correct range for Co (ref. 15). A compariton hetween the single and
multiple mesh time histories shows that the two are in phase, but that the multiple mesh resuits have a slight error in
amplitude. This error in time accuracy can be improved by decreasing the time step, and is probably due to time lagging
the outer houndary of the minor grid and possible errors in interpolation. The error is small. and the resuits demonstrate
the capability of the unsteady code to simulate the flow over a configuration with one component moving,

Two transonic store scparation simmulations using predetermined paths were computed with the two-dimensional
unsteady code. Hoth computations were started from the same steady-state solution. The initial grid arrangement for the
store separation simulations is shown in figure 5. Both bodies are meshed with body-conforming O-grids. The airfoil body
is & 10" thick ellipse with a chord length of 1. The minor store body is a 10% ellipse reduced hy 60%. Filled circles mark
the blanked points forming the hale in the major grid due to the minor body and the hole in the minor grid cansed in
its intersection with the airfoil. The empty cireles denote the nearest points on the major grid used to update the minor
grid outer boundary. The minor body nose is initially positioned at z/¢ — .3 and y/e - .15, The flow fiekd solution
for the initial position is illusteated with Mach contours and is shown in figure 6. The free stream Mach number for this
case is Mo, - .7, and both bodies are at 0" angle of attack. In the common overlap region, within the outer boundary of
the minor grid and the hole in the major grid, hoth sets of contours are shown. The contours at the hole boundaries and
the outer boundary of the minor grid match well, showing that the communication between the grids across the interface
boundarien i quite good. The flow channeled between the two bodies behaves somewhat like flow in a two-dimensional
nozale, and there is a strong shock between the major aud minor bodies, as well as some spillover on the lower surface of
the leading edge of the store. There is soine mismatch of contours at the shock caused by the interpolation hetween the
two dissimiiar meshes at the hole boundary. The slight discrepancy between the contours in the ¢ n arcas of the flow
field is partaitly attributed to the plotting package, as again the contours are being calculated on two dissimilar meshes.

The first store simulation case has & predetermined downward translation and rotation. The downward rate of .01
corresponds to a drop of .75 chordlengths per second for an average realtime store separation profile. The pitchdown
rolation on the store is approximately 2° per 100 time steps (Alan/c = 0.025). Figures 7 and 8 show the grid positions
and Mach contours for the atore case after 400 time steps. The store body has dropped about 10% of chord and has an
angle of attack of 8. Again, the Rlled circles mark the blanked points and the open circles denote the nearest points
for update of the minor grid outer boundary. In figure 8, the Mach contours reflect the movement of the store. A strong
shock occurs on the lower surface of the store due to the 8° downward pitch to the freestream, and the shock between
the two bodies is mich weaker. The mismatch of contours at the outer boundary of the minor mesh is attributed to the
interpolation and the time lag on that boundary. Figures O and 10 show the grid positions and Mach contours for this
case after 600 time steps. The store has dropped another 8% of chord and is now at s 12° angle to the freestream. The
shock beiween the two bodies has deteriorated to a weak shock at the tail on the upper surface of the store; it no longer
spans the distance between the bodies.
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The second store separation simulation involves a predetermined path in which the store first drops down, then rotates
back up. if the calculation were continued, the store would hit the wing. The first two figures, 11, and 12, show the grid
postions and Mach contours after 400 titne steps (with the same time step as before: Ata,/c - 0.025) The store is
dropping at the same rate as for the firat case, with a downward rotation of the trailing edge of 2° per 100 time steps.
The flow field (ligure 12) shows the strong shock hetween the two bodies. After the 400th time step, the store starts
to move upward at the same rate as before, but the trailing edge of the store continuing to rotate downward. The grid
positions after 600 titne steps are shown in figure 13, with the corresponding flow field solution shown in figure 11 The
shock between the bodies is stronger than before and has moved forward.

Steady, inviscid three-dimensional flow about a generic wing/body/tail configuration has been computed and compared
to experimental data The configuration is comprised of an ogive-cylinder fuselage with a wing and tail formed by swept,
untapered wings with NACA 0012 airfoil cross-sections. Four grids are used to mesh this configuration Figure 15 shows
the configuration with the surface grids for the fuselage, wing and tail, along with the outer boundaries for the wing and
tail meshes. These auter boundaries did not intersect. The outermost of the four grids is used to resolve the solution from
the near- to the farfield and is a warped hemispherical shell whose polar axis is coincident with the fuselage centerhine.
The me~h contains 37,000 points (74 x 25 x 20) and extends from 9 to 51 radii from the fuselage. The fusclage mesh is the
sccond mesh in this configuration, another warped, hemispherical shell whose inner boundary is the fuselage surface. The
grid contains 77,700 points distributed as 74 x 35 x 30 and extends to 11.5 radii. The outer boundary of the fusclage grid
overlaps the inner boundary of the outer mesh by 2.5 radii. The wing and tail grids are warped, cylindrical meshes whose
axes are directed along the wing- and tailspans. The end surfaces containing the roots of the wing and tail are coincident
with the fuselage surface. The wing mesh has 27,720 points (66 x 28 x 15) with 20 spanwise points on the wing surface,
and the (ail grid contains 15,120 points distributed as 56 x 18 x 15 with J0 points along, the tailspan. The composite mesh
consists of 157,540 points. A solution was computed for this configuration at a Mach number of 0.9 at an angle of attack
of 2°. Figure 16 shows the comparison of experiinental datz {ref. 16) and the computation.

As an example of another three-dimensional steady-state simulation, the flow about a generic three-body TER-fike
configuration was computed. The configuration consists of three ellipsoidal bodies in a triangular arrangement {(figare 17)
The grids of the two small bodies have major and minor axes one half those of the larger body. The two sinaller bodies are
embedded in the mesh of the larger, as indicated in figure 17. The figure shows the surface grids for all theee hodies, and
the warped outer shells of the iwo minot meshes. All the grids are spherical. The mesh of the large elliproid has 26,250
points {30 x 35 x 25); the two smaller meshes each have 15,750 points (30 x 35 x 15). The composite mesh has 57,750
points. Surface Mach contours, computed at M., = 0.8 and a = -2°, are shown in figure 18.

V1. Concluding Remarks

The chimera overset grid technique has been successfully demonstrated for the simulation of flow about complex con-
ligurations. While restricted here to two dimensions, the feasibility of numerically simulating transonic stare separation has
been carried oul. Moreover, preliminary steady-state simulations about generic wing/body/tail and TER configurations
show that the technique can be applied in three dimensions as weli. At least for simple configurations such as the TER,
the simulation of unsteady three-di ional store separation appears (easible in the near term
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Ovcerset grids for an airfoil with flap.

Tranafer of information between the grida.

e e ey




INPUTS OUTPUTS
TRAJECTORY EXISTING GRIDS NEW MESH
PACKAGE POSITIONS
1
NEW GRID IBLANK ARRAY
GRID PACKAGE POSITIONS METRICS
INTERPOLATION PTS.
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Figure 3.  Calling sequence for unsteady code main routine,
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Figure 10.

Marh contnurs for Arst ainre simulation
after 800 time steps. (Mo = .7,
a=0%)
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Figure 11.

Oversel grids for second store separa-
tion simulation after 400 time steps.
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Mach contours for second store separa-
tion case after 400 titne ateps.
Mo =.7, a=-0)
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Figure 13.
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Overset grid positions for second store
simnmintion after 60D time steps.

Mach rontours for seeond store simmla-
tion after GOD time siepa.
(Mo =.7T, a:10)
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Figure 18.  Three.dimensional wing/body/tail overset grid configuration.
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Pigure 6.  Wisg/hady/tali salution st M, = 0.9 and o = 2* (epen symbels, wpper surfare;

solid symbels, lowee surface).
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Figure 18.  Marh number contours on the surface of the cilipacids. (Mo, - 8, & = -T°)
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