20 research outputs found

    Molecular characterization of a marine turtle tumor epizootic, profiling external, internal and postsurgical regrowth tumors

    Get PDF
    Sea turtle populations are under threat from an epizootic tumor disease (animal epidemic) known as fibropapillomatosis. Fibropapillomatosis continues to spread geographically, with prevalence of the disease also growing at many longer-affected sites globally. However, we do not yet understand the precise environmental, mutational and viral events driving fibropapillomatosis tumor formation and progression. Here we perform transcriptomic and immunohistochemical profiling of five fibropapillomatosis tumor types: external new, established and postsurgical regrowth tumors, and internal lung and kidney tumors. We reveal that internal tumors are molecularly distinct from the more common external tumors. However, they have a small number of conserved potentially therapeutically targetable molecular vulnerabilities in common, such as the MAPK, Wnt, TGFβ and TNF oncogenic signaling pathways. These conserved oncogenic drivers recapitulate remarkably well the core pan-cancer drivers responsible for human cancers. Fibropapillomatosis has been considered benign, but metastatic-related transcriptional signatures are strongly activated in kidney and established external tumors. Tumors in turtles with poor outcomes (died/euthanized) have genes associated with apoptosis and immune function suppressed, with these genes providing putative predictive biomarkers. Together, these results offer an improved understanding of fibropapillomatosis tumorigenesis and provide insights into the origins, inter-tumor relationships, and therapeutic treatment for this wildlife epizootic

    Reliability of home CPAP titration with different automatic CPAP devices

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CPAP titration may be completed by automatic apparatus. However, differences in pressure behaviour could interfere with the reliability of pressure recommendations. Our objective was to compare pressure behaviour and effective pressure recommendations between three Automatic CPAP machines (Autoset Spirit, Remstar Auto, GK 420).</p> <p>Methods</p> <p>Sixteen untreated obstructive sleep apnea patients were randomly allocated to one of the 3 tested machines for a one-week home titration trial in a crossover design with a 10 days washout period between trials.</p> <p>Results</p> <p>The median pressure value was significantly lower with machine GK 420 (5.9 +/- 1.8 cm H<sub>2</sub>O) than with the other devices both after one night and one week of CPAP titration (7.4 +/- 1.3 and 6.6 +/- 1.9 cm H<sub>2</sub>O). The maximal pressure obtained over the one-week titration was significantly higher with Remstar Auto (12.6 +/- 2.4 cm H<sub>2</sub>O, Mean +/- SD) than with the two other ones (10.9 +/- 1.0 and 11.0 +/- 2.4 cm H<sub>2</sub>O). The variance in pressure recommendation significantly differed between the three machines after one night and between Autoset Spirit and the two other machines after 1 week.</p> <p>Conclusion</p> <p>Pressure behaviour and pressure recommendation significantly differ between Auto CPAP machines both after one night and one week of home titration.</p

    Somatic evolution and global expansion of an ancient transmissible cancer lineage

    Get PDF
    Made available in DSpace on 2019-10-06T15:53:36Z (GMT). No. of bitstreams: 0 Previous issue date: 2019-08-02GPD Charitable TrustLeverhulme TrustThe canine transmissible venereal tumor (CTVT) is a cancer lineage that arose several millennia ago and survives by “metastasizing” between hosts through cell transfer. The somatic mutations in this cancer record its phylogeography and evolutionary history. We constructed a time-resolved phylogeny from 546 CTVT exomes and describe the lineage's worldwide expansion. Examining variation in mutational exposure, we identify a highly context-specific mutational process that operated early in the cancer's evolution but subsequently vanished, correlate ultraviolet-light mutagenesis with tumor latitude, and describe tumors with heritable hyperactivity of an endogenous mutational process. CTVT displays little evidence of ongoing positive selection, and negative selection is detectable only in essential genes. We illustrate how long-lived clonal organisms capture changing mutagenic environments, and reveal that neutral genetic drift is the dominant feature of long-term cancer evolution.Transmissible Cancer Group Department of Veterinary Medicine University of CambridgeAnimal Management in Rural and Remote Indigenous Communities (AMRRIC)World VetsAnimal Shelter Stichting Dierenbescherming SurinameSikkim Anti-Rabies and Animal Health Programme Department of Animal Husbandry Livestock Fisheries and Veterinary Services Government of SikkimRoyal (Dick) School of Veterinary Studies Roslin Institute University of Edinburgh Easter Bush CampusConserLab Animal Preventive Medicine Department Faculty of Animal and Veterinary Sciences University of ChileCorozal Veterinary Hospital University of PanamáSt. George's UniversityNakuru District Veterinary Scheme LtdAnimal Medical CentreInternational Animal Welfare Training Institute UC Davis School of Veterinary MedicineCentro Universitário de Rio Preto (UNIRP)Department of Clinical and Veterinary Surgery São Paulo State University (UNESP)Ladybrand Animal ClinicVeterinary Clinic Sr. Dog'sWorld Vets Latin America Veterinary Training CenterNational Veterinary Research InstituteAnimal ClinicIntermunicipal Stray Animals Care Centre (DIKEPAZ)Animal Protection Society of SamoaFaculty of Veterinary Science University of ZuliaVeterinary Clinic BIOCONTROLFaculty of Veterinary Medicine School of Health Sciences University of ThessalyVeterinary Clinic El Roble Animal Healthcare Network Faculty of Animal and Veterinary Sciences University of ChileOnevetGroup Hospital Veterinário BernaUniversidade Vila VelhaVeterinary Clinic ZoovetservisÉcole Inter-états des Sciences et Médecine Vétérinaires de DakarDepartment of Small Animal Medicine Faculty of Veterinary Medicine Utrecht UniversityVetexpert Veterinary GroupVeterinary Clinic Lopez QuintanaClinique Veterinaire de Grand Fond Saint Gilles les BainsDepartment of Veterinary Sciences University of MessinaFacultad de Medicina Veterinaria y Zootecnia Universidad Autónoma del Estado de MéxicoSchool of Veterinary Medicine Universidad de las AméricasCancer Development and Innate Immune Evasion Lab Champalimaud Center for the UnknownTouray and Meyer Vet ClinicHillside Animal HospitalKampala Veterinary SurgeryAsavet Veterinary CharitiesVets Beyond BordersFaculty of Veterinary Medicine Autonomous University of YucatanLaboratorio de Patología Veterinaria Universidad de CaldasInterdisciplinary Centre of Research in Animal Health (CIISA) Faculty of Veterinary Medicine University of LisbonFour Paws InternationalHelp in SufferingVeterinary Clinic Dr José RojasDepartment of Biotechnology Balochistan University of Information Technology Engineering and Management SciencesCorozal Veterinary ClinicVeterinary Clinic VetmasterState Hospital of Veterinary MedicineJomo Kenyatta University of Agriculture and TechnologyLaboratory of Biomedicine and Regenerative Medicine Department of Clinical Sciences Faculty of Animal and Veterinary Sciences University of ChileFaculty of Veterinary and Agricultural Sciences University of MelbourneAnimal Anti Cruelty LeagueClinical Sciences Department Faculty of Veterinary Medicine BucharestDepartment of Pathology Faculty of Veterinary Medicine Ankara UniversityFaculty of Veterinary Sciences National University of AsuncionLilongwe Society for Protection and Care of Animals (LSPCA)Wellcome Sanger InstituteDepartment of Cellular and Molecular Medicine University of California San DiegoDepartment of Clinical and Veterinary Surgery São Paulo State University (UNESP)Leverhulme Trust: 102942/Z/13/

    Inadvertent human genomic bycatch and intentional capture raise beneficial applications and ethical concerns with environmental DNA

    No full text
    The field of environmental DNA (eDNA) is advancing rapidly, yet human eDNA applications remain underutilized and underconsidered. Broader adoption of eDNA analysis will produce many well-recognized benefits for pathogen surveillance, biodiversity monitoring, endangered and invasive species detection, and population genetics. Here we show that deep-sequencing-based eDNA approaches capture genomic information from humans (Homo sapiens) just as readily as that from the intended target species. We term this phenomenon human genetic bycatch (HGB). Additionally, high-quality human eDNA could be intentionally recovered from environmental substrates (water, sand and air), holding promise for beneficial medical, forensic and environmental applications. However, this also raises ethical dilemmas, from consent, privacy and surveillance to data ownership, requiring further consideration and potentially novel regulation. We present evidence that human eDNA is readily detectable from 'wildlife' environmental samples as human genetic bycatch, demonstrate that identifiable human DNA can be intentionally recovered from human-focused environmental sampling and discuss the translational and ethical implications of such findings.Funding for the initial HGB eDNA study was generously provided by the National Save the Sea Turtle Foundation under project name Fibropapillomatosis Training and Research Initiative (D.J.D.), a Welsh Government Sêr Cymru II and the European Union Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 663830-BU115 (D.J.D.). This research was also supported by Gumbo Limbo Nature Center d/b/a Friends of Gumbo Limbo (a 501c3 non-profit organization) through a generous donation through their Graduate Research Grant programme (J.A.F.) and by an Irish Research Council Government of Ireland Postgraduate Scholarship, under project no. GOIPG/2020/1056 (L.W.). Intentional human eDNA research was funded by D.J.D.’s University of Florida start-up funds. M.R.S. was supported by an EMBO long-term fellowship (ALTF 544-2021). We thank M. Q. Martindale, N. Condron, K. Yetsko, S. Creer, A. Pacetti, E. Ryan, C. Eastman and all of our generous co-authors on the wildlife and pathogen research papers for which these HGB samples were originally generated8,17. We thank P. Murphy and R. Rolfe for facilitating eDNA extraction of Irish samples in their lab in the Zoology Department, Trinity College Dublin, and A. Krstic, W. Kolch, A. G. Munoz and the Conway Core Facilities staff for facilitating qPCR of the Irish samples at Systems Biology Ireland and the Conway Institute of Biomolecular and Biomedical Research at University College Dublin. We also thank F. Duffy and I. Duffy for assistance with sampling; M. ten Cate and A. Whilde for gifting supplies; K. Foote, A. Rich and the NPS staff of the Fort Matanzas National Monument for valuable assistance with permitting and facilitating access to Rattlesnake Island and site selection; and S. Loesgen (University of Florida) for the SH-SY5Y cells. Finally, we thank the anonymous study participants who permitted us to collect their footprints and room air for human eDNA analysis, with full ethical approval and informed consent

    Inadvertent human genomic bycatch and intentional capture raise beneficial  applications and ethical concerns with environmental DNA

    No full text
    The feld of environmental DNA (eDNA) is advancing rapidly, yet human  eDNA applications remain underutilized and underconsidered. Broader  adoption of eDNA analysis will produce many well-recognized benefts  for pathogen surveillance, biodiversity monitoring, endangered and  invasive species detection, and population genetics. Here we show that  deep-sequencing-based eDNA approaches capture genomic information  from humans (Homo sapiens) just as readily as that from the intended  target species. We term this phenomenon human genetic bycatch (HGB).  Additionally, high-quality human eDNA could be intentionally recovered  from environmental substrates (water, sand and air), holding promise for  benefcial medical, forensic and environmental applications. However,  this also raises ethical dilemmas, from consent, privacy and surveillance  to data ownership, requiring further consideration and potentially novel  regulation. We present evidence that human eDNA is readily detectable from  ‘wildlife’ environmental samples as human genetic bycatch, demonstrate  that identifable human DNA can be intentionally recovered from  human-focused environmental sampling and discuss the translational and  ethical implications of such fndings. </p

    Tracing the rise of malignant cell lines: distribution, epidemiology and evolutionary interactions of two transmissible cancers in Tasmanian devils

    Get PDF
    Emerging infectious diseases are rising globally and understanding host-pathogen interactions during the initial stages of disease emergence is essential for assessing potential evolutionary dynamics and designing novel management strategies. Tasmanian devils (Sarcophilus harrisii) are endangered due to a transmissible cancer-devil facial tumour disease (DFTD)-that since its emergence in the 1990s, has affected most populations throughout Tasmania. Recent studies suggest that devils are adapting to the DFTD epidemic and that disease-induced extinction is unlikely. However, in 2014, a second and independently evolved transmissible cancer-devil facial tumour 2 (DFT2)-was discovered at the d'Entrecasteaux peninsula, in south-east Tasmania, suggesting that the species is prone to transmissible cancers. To date, there is little information about the distribution, epidemiology and effects of DFT2 and its interaction with DFTD. Here, we use data from monitoring surveys and roadkills found within and adjacent to the d'Entrecasteaux peninsula to determine the distribution of both cancers and to compare their epidemiological patterns. Since 2012, a total of 51 DFTD tumours have been confirmed among 26 individuals inside the peninsula and its surroundings, while 40 DFT2 tumours have been confirmed among 23 individuals, and two individuals co-infected with both tumours. All devils with DFT2 were found within the d'Entrecasteaux peninsula, suggesting that this new transmissible cancer is geographically confined to this area. We found significant differences in tumour bodily location in DFTD and DFT2, with non-facial tumours more commonly found in DFT2. There was a significant sex bias in DFT2, with most cases reported in males, suggesting that since DFT2 originated from a male host, females might be less susceptible to this cancer. We discuss the implications of our results for understanding the epidemiological and evolutionary interactions of these two contemporary transmissible cancers and evaluating the effectiveness of potential management strategies
    corecore