16 research outputs found

    Stoichiometry of Base Excision Repair Proteins Correlates with Increased Somatic CAG Instability in Striatum over Cerebellum in Huntington's Disease Transgenic Mice

    Get PDF
    Huntington's disease (HD) is a progressive neurodegenerative disorder caused by expansion of an unstable CAG repeat in the coding sequence of the Huntingtin (HTT) gene. Instability affects both germline and somatic cells. Somatic instability increases with age and is tissue-specific. In particular, the CAG repeat sequence in the striatum, the brain region that preferentially degenerates in HD, is highly unstable, whereas it is rather stable in the disease-spared cerebellum. The mechanisms underlying the age-dependence and tissue-specificity of somatic CAG instability remain obscure. Recent studies have suggested that DNA oxidation and OGG1, a glycosylase involved in the repair of 8-oxoguanine lesions, contribute to this process. We show that in HD mice oxidative DNA damage abnormally accumulates at CAG repeats in a length-dependent, but age- and tissue-independent manner, indicating that oxidative DNA damage alone is not sufficient to trigger somatic instability. Protein levels and activities of major base excision repair (BER) enzymes were compared between striatum and cerebellum of HD mice. Strikingly, 5′-flap endonuclease activity was much lower in the striatum than in the cerebellum of HD mice. Accordingly, Flap Endonuclease-1 (FEN1), the main enzyme responsible for 5′-flap endonuclease activity, and the BER cofactor HMGB1, both of which participate in long-patch BER (LP–BER), were also significantly lower in the striatum compared to the cerebellum. Finally, chromatin immunoprecipitation experiments revealed that POLβ was specifically enriched at CAG expansions in the striatum, but not in the cerebellum of HD mice. These in vivo data fit a model in which POLβ strand displacement activity during LP–BER promotes the formation of stable 5′-flap structures at CAG repeats representing pre-expanded intermediate structures, which are not efficiently removed when FEN1 activity is constitutively low. We propose that the stoichiometry of BER enzymes is one critical factor underlying the tissue selectivity of somatic CAG expansion

    Mitochondrial Mutations in Adenoid Cystic Carcinoma of the Salivary Glands

    Get PDF
    Background: The MitoChip v2.0 resequencing array is an array-based technique allowing for accurate and complete sequencing of the mitochondrial genome. No studies have investigated mitochondrial mutation in salivary gland adenoid cystic carcinomas. Methodology: The entire mitochondrial genome of 22 salivary gland adenoid cystic carcinomas (ACC) of salivary glands and matched leukocyte DNA was sequenced to determine the frequency and distribution of mitochondrial mutations in ACC tumors. Principal Findings: Seventeen of 22 ACCs (77%) carried mitochondrial mutations, ranging in number from 1 to 37 mutations. A disproportionate number of mutations occurred in the D-loop. Twelve of 17 tumors (70.6%) carried mutations resulting in amino acid changes of translated proteins. Nine of 17 tumors (52.9%) with a mutation carried an amino acid changing mutation in the nicotinamide adenine dinucleotide dehydrogenase (NADH) complex. Conclusions/Significance: Mitochondrial mutation is frequent in salivary ACCs. The high incidence of amino acid changing mutations implicates alterations in aerobic respiration in ACC carcinogenesis. D-loop mutations are of unclear significance

    DNA methylation age of blood predicts all-cause mortality in later life

    Get PDF
    Background: DNA methylation levels change with age. Recent studies have identified biomarkers of chronological age based on DNA methylation levels. It is not yet known whether DNA methylation age captures aspects of biological age. Results: Here we test whether differences between people's chronological ages and estimated ages, DNA methylation age, predict all-cause mortality in later life. The difference between DNA methylation age and chronological age ({increment}age) was calculated in four longitudinal cohorts of older people. Meta-analysis of proportional hazards models from the four cohorts was used to determine the association between {increment}age and mortality. A 5-year higher {increment}age is associated with a 21% higher mortality risk, adjusting for age and sex. After further adjustments for childhood IQ, education, social class, hypertension, diabetes, cardiovascular disease, and APOE e4 status, there is a 16% increased mortality risk for those with a 5-year higher {increment}age. A pedigree-based heritability analysis of {increment}age was conducted in a separate cohort. The heritability of {increment}age was 0.43. Conclusions: DNA methylation-derived measures of accelerated aging are heritable traits that predict mortality independently of health status, lifestyle factors, and known genetic factors

    Air pollution and DNA methylation: interaction by psychological factors in the VA Normative Aging Study

    No full text
    DNA methylation is a potential pathway linking air pollution to disease. Studies indicate that psychological functioning modifies the association between pollution and morbidity. The authors estimated the association of DNA methylation with ambient particulate matter less than 2.5 \ub5m in diameter (PM(2.5)) and black carbon, using mixed models. DNA methylation of the inducible nitric oxide synthase gene, iNOS, and the glucocorticoid receptor gene, GCR, was measured by quantitative polymerase chain reaction pyrosequencing of 1,377 blood samples from 699 elderly male participants in the VA Normative Aging Study (1999-2009). The authors also investigated whether this association was modified by psychological factors including optimism or pessimism, anxiety, and depression. iNOS methylation was decreased after acute exposure to both black carbon and PM(2.5). A 1-\u3bcg/m(3) increase in exposure to black carbon in the 4 hours preceding the clinical examination was associated with a 0.9% decrease in 5-methylcytosine (95% CI: 0.4, 1.4) in iNOS, and a 10-\u3bcg/m(3) increase in exposure to PM(2.5) was associated with a 0.6% decrease in 5-methylcytosine (95% CI: 0.03, 1.1) in iNOS. Participants with low optimism and high anxiety had associations that were 3-4 times larger than those with high optimism or low anxiety. GCR methylation was not associated with particulate air pollution exposure
    corecore