9 research outputs found

    Detecting spatio-temporal mortality clusters of European countries by sex and ag

    Full text link
    [EN] Background: Mortality decreased in European Union (EU) countries during the last century. Despite these similar trends, there are still considerable differences in the levels of mortality between Eastern and Western European countries. Sub-group analysis of mortality in Europe for different age and sex groups is common, however to our knowledge a spatio-temporal methodology as in this study has not been applied to detect significant spatial dependence and interaction with time. Thus, the objective of this paper is to quantify the dynamics of mortality in Europe and detect significant clusters of mortality between European countries, applying spatio-temporal methodology. In addition, the joint evolution between the mortality of European countries and their neighbours over time was studied. Methods: The spatio-temporal methodology used in this study takes into account two factors: time and the geographical location of countries and, consequently, the neighbourhood relationships between them. This methodology was applied to 26 European countries for the period 1990-2012. Results: Principally, for people older than 64 years two significant clusters were obtained: one of high mortality formed by Eastern European countries and the other of low mortality composed of Western countries. In contrast, for ages below or equal to 64 years only the significant cluster of high mortality formed by Eastern European countries was observed. In addition, the joint evolution between the 26 European countries and their neighbours during the period 1990-2012 was confirmed. For this reason, it can be said that mortality in EU not only depends on differences in the health systems, which are a subject to national discretion, but also on supra-national developments. Conclusions: This paper proposes statistical tools which provide a clear framework for the successful implementation of development public policies to help the UE meet the challenge of rethinking its social model (Social Security and health care) and make it sustainable in the medium term.The authors are grateful for the financial support provided by the Ministry of Economy and Competitiveness, project MTM2013-45381-P. Adina Iftimi gratefully acknowledges financial support from the MECyD (Ministerio de Educacion, Cultura y Deporte, Spain) Grant FPU12/04531. Francisco Montes is grateful for the financial support provided by the Spanish Ministry of Economy and Competitiveness, project MTM2016-78917-R. The research by Patricia Carracedo and Ana Debon has been supported by a grant from the Mapfre Foundation.Carracedo-Garnateo, P.; Debón Aucejo, AM.; Iftimi, A.; Montes-Suay, F. (2018). Detecting spatio-temporal mortality clusters of European countries by sex and ag. International Journal for Equity in Health. 17:1-19. https://doi.org/10.1186/s12939-018-0750-zS11917Anderson TW, Goodman LA. Statistical Inference about Markov Chains. Ann Math Stat. 1957; 28(1):89–110.Anselin L. Local Indicators of Spatial Association–LISA. Geographical Anal. 1995; 27(2):93–115.Bilbao-Ubillos J. Is there still such a thing as the ‘European social model’?. Int J Soc Welf. 2016; 25:110–25.Bivand R. spdep: Spatial Dependence:Weighting Schemes, Statistics and Models. 2012. R package version 0.5-53. http://CRAN.R-project.org/package=spdep .Bivand R, Hauke J, Kossowski T. Computing the Jacobian in Gaussian Spatial Autoregressive Models: An Illustrated Comparison of Available Methods. Geographical Anal. 2013; 45(2):150–79.Bivand R, Keitt T, Rowlingson B. rgdal: Bindings for the Geospatial Data Abstraction Library. 2016. R package version 1.1-10. https://CRAN.R-project.org/package=rgdal .Bivand R, Lewin-Koh N. maptools: Tools for Reading and Handling Spatial Objects. 2016. R package version 0.8-39 https://CRAN.R-project.org/package=maptools .Bonneux L, Huisman C. de Beer J. Mortality in 272 European regions, 2002-2004: an update. Eur J Epidemiol. 2010; 25(1):77–85. Reporting year: 2010.Charpentier A. Computational Actuarial Science with R. Chapman y Hall/CRC. 2014.Cliff AD, Ord JK. Spatial autocorrelation. London: Pion; 1973.Cutler D, Deaton A, Lleras-Muney A. The Determinants of Mortality. J Econ Perspect. 2006; 20(3):97–120.Debón A, Chaves L, Haberman S, Villa F. Characterization of between-group inequality of longevity in European Union countries. Insur Math Econ. 2017; 75:151–65.Fleiss J, Levin B, Paik M. Statistical Methods for Rates and Proportions: Wiley; 2013.Gordon M. Gmisc: Descriptive Statistics, Transition Plots, and More. 2016. R package version 1.3.1. https://CRAN.R-project.org/package=Gmisc .Hinde A. Demographic methods. Routledge: Routledge; 1998.Hyndman RJ, Booth H, Tickle L, Maindonald J. demography: Forecasting mortality, fertility, migration and population data. 2014. package version 1.18. https://CRAN.R-project.org/package=demography .Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). 2016. Available at www.mortality.org or www.humanmortality.de (data downloaded on 12th July 2016).Hatzopoulos P, Haberman S. Common mortality modeling and coherent forecasts. An empirical analysis of worldwide mortality data. Insurance Math Econ. 2013; 52(2):320–37.Iftimi A, Montes F, Santiyán AM, Martínez-Ruiz F. Space–time airborne disease mapping applied to detect specific behaviour of varicella in Valencia, Spain Spatial Spatio-Temporal Epidemiol. 2015; 14:33–44.Julious S, Nicholl J, George S. Why do we continue to use standardized mortality ratios for small area comparisons?. J Public Health. 2001; 23(1):40–6.Laurent T, Ruiz-Gazen A, Thomas-Agnan C. GeoXp: An R package for exploratory spatial data analysis. J Stat Softw. 2012; 47(2):1–23.Leon DA. Trends in European life expectancy: a salutary view. Int J Epidemiol. 2011; 40:271–7.Li H, Li L, Wu B, Xiong Y. The End of Cheap Chinese Labor. J Econ Perspect. 2013; 26(4):57–74.Mackenbach JP, Karanikolos M, McKee M. The unequal health of Europeans: successes and failures of policies. The Lancet. 2013; 381(9872):1125–34.Meslé F. Mortality in Central and Eastern Europe: Long-term trends and recent upturns. Demographic Res. 2004; 2:45–70.Meslé F, Vallin J. Mortality in Europe: The divergence between East and West. Population (English Edition). 2002; 57(1):157–97.Moran PAP. Notes on continuous stochastic phenomena. Biometrika. 1950; 37(1-2):17–23.Moran PAP. A Test for the Serial Independence of Residuals. Biometrika. 1950; 37(1/2):178–81.Neuwirth E. RColorBrewer: ColorBrewer Palettes. R package version. 2014; 1:1–2. https://CRAN.R-project.org/package=RColorBrewer .Oleckno WA. Epidemiology: concepts and methods: Waveland Press, Inc.; 2008.Quah D. Galton’s Fallacy and Tests of the Convergence Hypothesis. Scand J Econ. 1993; 95(4):427–43.R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. 2015. https://www.R-project.org/ .Rey S. In: Fischer MM, Nijkamp P, (eds).Spatial Dynamics and Space-Time Data Analysis. Berlin, Heidelberg: Springer: Handbook of Regional Science; 2014, pp. 1365–83.Rey SJ. Spatial Empirics for Economic Growth and Convergence. Geogr Anal. 2001; 33(3):195–214.Riffe T. Reading Human Fertility Database and Human Mortality Database data into R. Technical Report TR-2015-004, MPIDR. 2015.Schofield R, Reher D, Bideau A. The Decline of Mortality in Europe. International studies in demography. Oxford: Clarendon Press; 1991.Shaw M, Orford S, Brimblecombe N, Dorling D. Widening inequality in mortality between 160 regions of 15 European countries in the early 1990s. Soc Sci Med. 2000; 50(7-8):1047–58.Spinakis A, Anastasiou G, Panousis V, Spiliopoulos K, Palaiologou S, Yfantopoulos J. Expert Review and Proposals for Measurement of Health Inequalities in the European Union. European Commission. Technical report,Luxembourg: European Commission Directorate General for Health and Consumers; 2011. http://ec.europa.eu/health/social_determinants/docs/full_quantos_en.pdf .Staehr K. Economic transition in Estonia. Background, reforms and results In: Rindzeviciute E, editor. Contemporary Change in Estonia. Baltic and East European Studies. Sodertorns hogskola: Baltic and East European Studies: 2004. p. 437–67.Trnka L, Dankova D, Zitova J, Cimprichova L, Migliori GB, Clancy L, Zellweger J. Survey of BCG vaccination policy in Europe: 1994-96. Bull World Health Organ. 1998; 76(1):85–91.United Nations Inter–agency Group for Child Mortality Estimation. Levels & Trends in Child Mortality: Report 2013. New York: Technical report, United Nations Children’s Fund; 2013. Avaliable at www.who.int/maternal_child_adolescent/documents/levels_trends_child_mortality_2013.pdf Accessed 27 Oct 2016.Vågerö D. The east–west health divide in Europe: Growing and shifting eastwards. Eur Rev. 2010; 18(01):23–34.Vaupel JW, Zhang Z, van Raalte AA, Vaupel JW, Zhang Z, van Raalte AA. Life expectancy and disparity: an international comparison of life table data. BMJ Open. 2011; 1:e000128.Wickham H, Chang W. devtools: Tools to Make Developing R Packages Easier. R package version 1.11.1. 2016. https://CRAN.R-project.org/package=devtools .Wilcox R. Introduction to robust estimation and hypothesis testing, 3rd Edition.San Diego: Academic Press; 2012

    Computer assisted training in statistics : internet and multimedia : a survey of existing tools

    Get PDF
    Conférence Eurostat: New Trends and Technologies for StatisticsDuring the last ten years, many tools have been produced for self-learning in statistics. It began with distance teaching with paper and pencil, video or television; then specialised software appeared: the first ones on a book model, then using the resources of multimedia. Recent developments are now with Internet. This paper aims to classify available products and analyse future trends
    corecore