351 research outputs found
Hierarchies of stratigraphic discontinuity surfaces in siliciclastic, carbonate and mixed siliciclastic-bioclastic tidalites: Implications for fluid migration in reservoir quality assessment
The hierarchies of the stratigraphic discontinuity surfaces observed in ancient tidalites are qualitatively assessed, aiming to evaluate their role as possible preferential conduits for fluid migration. Three outcrop examples are presented from microtidal settings of southern Italy: (i) siliciclastic tidalites consisting of quartz-rich cross-stratified sandstones generated by strong two-directional tidal currents flowing along a tidal strait; (ii) carbonate tidalites, which accumulated in a Cretaceous lagoon and tidal flat where peritidal cycles formed vertically-stacked sequences of biopeloidal and fenestral packstones, wackestones and bindstones during repeated phases of Milankovitch-scale sea-level changes; (iii) mixed, siliciclastic-bioclastic tidalites, deposited in a bay and recording offshore-transition, to shoreface wave-dominated and tide-influenced environments. Observations made during this study suggest that fluid movement can be controlled by the presence of main bounding surfaces that occur at different dimensions, from large (hectometre)-scale, to medium (decametre)-scale, to smaller (metre)-scales. These surfaces produced either by depositional or erosional processes, are characterised by different features and geometries in siliciclastic, carbonate and mixed siliciclastic-bioclastic tidalites arguably revealing complex internal pathways for fluid flows. These results suggest that fluids propagating along the main discontinuities follow a dominant sub-horizontal direction of propagation, associated with minor sub-vertical movements, due to local internal surface geometries and interconnections and a general lack of fractures. This surface-based approach to the study of fluid-flow transmission within stratified rocks represents a conceptual attempt to predict fluid mobility and reservoir potential in tidalite-bearing siliciclastic, carbonate and mixed reservoir rocks
Murge and Pre-murge in southern Italy: the last piece of Adria, the (almost) lost continent, attempting to became an aUGGp candidate (MurGEOpark)
In 2019, the executive of the Alta Murgia National Park (southeastern Italy) decided to propose its territory as possible inclusion in the network of the UNESCO Global Geoparks. Since then, in cooperation with the Department of Earth and Environmental Sciences (Aldo Moro University of Bari) and SIGEA, it is working to candidate the area as an aUGGp (called “MurGEOpark”). The MurGEOpark comprises the Alta Murgia area, where a Cretaceous sector of the Apulia Carbonate Platform crops out, and the adjacent Pre-Murge area, where the southwestward lateral continuation of the same platform, being flexed toward the southern Apennines mountain chain, is thinly covered by Plio-Quaternary foredeep deposits.
The worldwide geological uniqueness is that the area is the only in situ remnant of the AdriaPlate, the old continent almost entirely squeezed between Africa and Europe. In such a contest, AltaMurgia is a virtually undeformed sector of Adria (the Apulia Foreland), while other territories of theplate are, and/or were, involved in the subduction/collision processes. In the MurGEOpark, the crustof Adria is still rooted to its mantle, and the Cretaceous evolution of the continent is spectacularlyrecorded in Alta Murgia thanks to the limestone succession of one of the largest peri-Tethyancarbonate platform (the Apulia Carbonate Platform). The MurGEOpark comprises also the Pre-Murge area, which represents the outer south-Apennines foredeep, whose Plio-Quaternaryevolution is spectacularly exposed thanks to an “anomalous” regional middle-late Quaternary uplift.The international value of the proposal is enriched by the presence of several geological singularities such as two paleontological jewels of very different age: a Neanderthal skeletonpreserved in speleothems within a karst cave, and one of the largest surfaces in the world withupper Cretaceous dinosaur tracks (about 25.000 footprints). Moreover, the close relationships between man and geology are spectacularly documented in the MurGEOpark: among the others, the use and conservation of water in a karst area, the prehistoric and ancestral choices ofurbanization, karst caves traditionally used as religious sites, etc. All these examples demonstratehow the MurGEOpark could offer a good opportunity to spread the geological culture to a wide and
diverse audienc
Mechanisms of SARS-CoV-2 Inactivation Using UVC Laser Radiation
Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) has had a tremendous impact on humanity. Prevention of transmission by disinfection of surfaces and aerosols through a chemical-free method is highly desirable. Ultraviolet C (UVC) light is uniquely positioned to achieve inactivation of pathogens. We report the inactivation of SARS-CoV-2 virus by UVC radiation and explore its mechanisms. A dose of 50 mJ/cm2 using a UVC laser at 266 nm achieved an inactivation efficiency of 99.89%, while infectious virions were undetectable at 75 mJ/cm2 indicating >99.99% inactivation. Infection by SARS-CoV-2 involves viral entry mediated by the spike glycoprotein (S), and viral reproduction, reliant on translation of its genome. We demonstrate that UVC radiation damages ribonucleic acid (RNA) and provide in-depth characterization of UVC-induced damage of the S protein. We find that UVC severely impacts SARS-CoV- 2 spike protein’s ability to bind human angiotensin-converting enzyme 2 (hACE2) and this correlates with loss of native protein conformation and aromatic amino acid integrity. This report has important implications for the design and development of rapid and effective disinfection systems against the SARS-CoV-2 virus and other pathogens.publishedVersio
Pyrazolo-triazolo-pyrimidines as adenosine receptor antagonists: A complete structure–activity profile
In the last 5 years, many efforts have been conducted searching potent and selective human A3 adenosine antagonists. In this field several different classes of compounds, possessing very good affinity (nM range) and with a broad range of selectivity, have been proposed. Recently, our group synthesized a new series of pyrazolo-triazolo-pyrimidines bearing different substitutions at the N5 and N8 positions, which have been described as highly potent and selective human A3 adenosine receptor antagonists. The present review summarizes available data and provides an overview of the structure–activity relationships found for this class of human A3 adenosine receptor antagonists
Nanostructured ZnO coatings grown by pulsed laser deposition for optical gas sensing of butane
Multiomics links global surfactant dysregulation with airflow obstruction and emphysema in COPD
RATIONALE: Pulmonary surfactant is vital for lung homeostasis as it reduces surface tension to prevent alveolar collapse and provides essential immune-regulatory and antipathogenic functions. Previous studies demonstrated dysregulation of some individual surfactant components in COPD. We investigated relationships between COPD disease measures and dysregulation of surfactant components to gain new insights into potential disease mechanisms. METHODS: Bronchoalveolar lavage proteome and lipidome were characterised in ex-smoking mild/moderate COPD subjects (n=26) and healthy ex-smoking (n=20) and never-smoking (n=16) controls using mass spectrometry. Serum surfactant protein analysis was performed. RESULTS: Total phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, surfactant protein (SP)-B, SP-A and SP-D concentrations were lower in COPD versus controls (log2 fold change (log2FC) -2.0, -2.2, -1.5, -0.5, -0.7 and -0.5 (adjusted p<0.02), respectively) and correlated with lung function. Total phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, SP-A, SP-B, SP-D, napsin A and CD44 inversely correlated with computed tomography small airways disease measures (expiratory to inspiratory mean lung density) (r= -0.56, r= -0.58, r= -0.45, r= -0.36, r= -0.44, r= -0.37, r= -0.40 and r= -0.39 (adjusted p<0.05)). Total phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, SP-A, SP-B, SP-D and NAPSA inversely correlated with emphysema (% low-attenuation areas): r= -0.55, r= -0.61, r= -0.48, r= -0.51, r= -0.41, r= -0.31 and r= -0.34, respectively (adjusted p<0.05). Neutrophil elastase, known to degrade SP-A and SP-D, was elevated in COPD versus controls (log2FC 0.40, adjusted p=0.0390), and inversely correlated with SP-A and SP-D. Serum SP-D was increased in COPD versus healthy ex-smoking volunteers, and predicted COPD status (area under the curve 0.85). CONCLUSIONS: Using a multiomics approach, we demonstrate, for the first time, global surfactant dysregulation in COPD that was associated with emphysema, giving new insights into potential mechanisms underlying the cause or consequence of disease
Pyrazolo-triazolo-pyrimidines as adenosine receptor antagonists: Effect of the N-5 bond type on the affinity and selectivity at the four adenosine receptor subtypes
In the last few years, many efforts have been made to search for potent and selective human A3 adenosine antagonists. In particular, one of the most promising human A3 adenosine receptor antagonists is represented by the pyrazolo-triazolo-pyrimidine family. This class of compounds has been strongly investigated from the point of view of structure-activity relationships. In particular, it has been observed that fundamental requisites for having both potency and selectivity at the human A3 adenosine receptors are the presence of a small substituent at the N8 position and an unsubstitued phenyl carbamoyl moiety at the N5 position. In this study, we report the role of the N5-bond type on the affinity and selectivity at the four adenosine receptor subtypes. The observed structure-activity relationships of this class of antagonists are also exhaustively rationalized using the recently published ligand-based homology modeling approach
New 2,6,9-trisubstituted adenines as adenosine receptor antagonists: a preliminary SAR profile
A new series of 2,6,9-trisubstituted adenines (5–14) have been prepared and evaluated in radioligand binding studies for their affinity at the human A1, A2A and A3 adenosine receptors and in adenylyl cyclase experiments for their potency at the human A2B subtype. From this preliminary study the conclusion can be drawn that introduction of bulky chains at the N6 position of 9-propyladenine significantly increased binding affinity at the human A1 and A3 adenosine receptors, while the presence of a chlorine atom at the 2 position resulted in a not univocal effect, depending on the receptor subtype and/or on the substituent present in the N6 position. However, in all cases, the presence in the 2 position of a chlorine atom favoured the interaction with the A2A subtype. These results demonstrated that, although the synthesized compounds were found to be quite inactive at the human A2B subtype, adenine is a useful template for further development of simplified adenosine receptor antagonists with distinct receptor selectivity profiles
Deep learning neural network prediction of postoperative complications in patients undergoing laparoscopic right hemicolectomy with or without CME and CVL for colon cancer: insights from SICE (Società Italiana di Chirurgia Endoscopica) CoDIG data
BackgroundPostoperative complications in colorectal surgery can significantly impact patient outcomes and healthcare costs. Accurate prediction of these complications enables targeted perioperative management, improving patient safety and optimizing resource allocation. This study evaluates the application of machine learning (ML) models, particularly deep learning neural networks (DLNN), in predicting postoperative complications following laparoscopic right hemicolectomy for colon cancer.MethodsData were drawn from the CoDIG (ColonDx Italian Group) multicenter database, which includes information on patients undergoing laparoscopic right hemicolectomy with complete mesocolic excision (CME) and central vascular ligation (CVL). The dataset included demographic, clinical, and surgical factors as predictors. Models such as decision trees (DT), random forest (RF), and DLNN were trained, with DLNN evaluated using cross-validation metrics. To address class imbalance, the synthetic minority over-sampling technique (SMOTE) was employed. The primary outcome was the prediction of postoperative complications within 1 month of surgery.ResultsThe DLNN model outperformed other models, achieving an accuracy of 0.86, precision of 0.84, recall of 0.90, and an F1 score of 0.87. Relevant predictors identified included intraoperative minimal bleeding, blood transfusion, and adherence to the fast-track recovery protocol. The absence of intraoperative bleeding, intracorporeal anastomosis, and fast-track protocol adherence were associated with a reduced risk of complications.ConclusionThe DLNN model demonstrated superior predictive performance for postoperative complications compared to other ML models. The findings highlight the potential of integrating ML models into clinical practice to identify high-risk patients and enable tailored perioperative care. Future research should focus on external validation and implementation of these models in diverse clinical settings to further optimize surgical outcomes
- …
