968 research outputs found
Anti-ferromagnetic ordering in arrays of superconducting pi-rings
We report experiments in which one dimensional (1D) and two dimensional (2D)
arrays of YBa2Cu3O7-x-Nb pi-rings are cooled through the superconducting
transition temperature of the Nb in various magnetic fields. These pi-rings
have degenerate ground states with either clockwise or counter-clockwise
spontaneous circulating supercurrents. The final flux state of each ring in the
arrays was determined using scanning SQUID microscopy. In the 1D arrays,
fabricated as a single junction with facets alternating between alignment
parallel to a [100] axis of the YBCO and rotated 90 degrees to that axis,
half-fluxon Josephson vortices order strongly into an arrangement with
alternating signs of their magnetic flux. We demonstrate that this ordering is
driven by phase coupling and model the cooling process with a numerical
solution of the Sine-Gordon equation. The 2D ring arrays couple to each other
through the magnetic flux generated by the spontaneous supercurrents. Using
pi-rings for the 2D flux coupling experiments eliminates one source of disorder
seen in similar experiments using conventional superconducting rings, since
pi-rings have doubly degenerate ground states in the absence of an applied
field. Although anti-ferromagnetic ordering occurs, with larger negative bond
orders than previously reported for arrays of conventional rings, long-range
order is never observed, even in geometries without geometric frustration. This
may be due to dynamical effects. Monte-Carlo simulations of the 2D array
cooling process are presented and compared with experiment.Comment: 10 pages, 15 figure
Admixtures to d-wave gap symmetry in untwinned YBa2Cu3O7 superconducting films measured by angle-resolved electron tunneling
We report on an \textit{ab}-anisotropy of and in
ramp-edge junctions between untwinned YBaCuO and % -wave
Nb. For these junctions, the angle with the YBaCuO
crystal b-axis is varied as a single parameter. The
A()-dependence presents 2-fold symmetry. The minima in
at suggest a real s-wave subdominant
component and negligible -wave or imaginary s-wave admixtures. The
()-dependence is well-fitted by 83% -, 15%
isotropic - and 2% anisotropic s-wave order parameter symmetry, consistent
with .Comment: 4 pages, 3 figures, to be published in Physical Review Letter
Periodic alternating -junction structures as realization of -Josephson junctions
We consider the properties of a periodic structure consisting of small
alternating 0- and pi- Josephson junctions. We show that depending on the
relation between the lengths of the individual junctions, this system can be
either in the homogeneous or in the phase-modulated state. The modulated phase
appears via a second order phase transition when the mismatch between the
lengths of the individual junctions exceeds the critical value. The screening
length diverges at the transition point. In the modulated state, the
equilibrium phase difference in the structure can take any value from -pi to pi
(phi-junction). The current-phase relation in this structure has very unusual
shape with two maxima. As a consequence, the field dependence of the critical
current in a small structure is very different from the standard Fraunhofer
dependence. The Josephson vortex in a long structure carries partial magnetic
flux, which is determined by the equilibrium phase.Comment: 4 pages, 3 figues, submitted to Phys. Rev.
Superconducting thin films of MgB2 on (001)-Si by pulsed laser deposition
Superconducting thin films have been prepared on Si-substrates, using pulsed
laser deposition from a target composed of a mixture of Mg and MgB2 powders.
The films were deposited at room temperature and post-annealed at 600 degrees
C. The zero resistance transition temperatures were 12 K, with an onset
transition temperature of 27 K. Special care has been taken to avoid oxidation
of Mg in the laser plasma and deposited film, by optimizing the background
pressure of Ar gas in the deposition chamber. For this the optical emission in
the visible range from the plasma has been used as indicator. Preventing Mg
from oxidation was found to be essential to obtain superconducting films
Superconducting gap of overdoped Tl2Ba2CuO6+d observed by Raman scattering
We report Raman scattering spectra for single crystals of overdoped
Tl2Ba2CuO6+d (Tl-2201) at low temperatures. It was observed that the
pair-breaking peaks in A1g and B1g spectra radically shift to lower energy with
carrier doping. We interpret it as s-wave component mixing into d-wave,
although the crystal structure is tetragonal. Since similar phenomena were
observed also in YBa2Cu3Oy and Bi2Sr2CaCu2Oz, we conclude that s-wave mixing is
a common property for overdoped high-Tc superconductors.Comment: 8 pages, 3 figures, proceedings of SNS200
About the maximal rank of 3-tensors over the real and the complex number field
High dimensional array data, tensor data, is becoming important in recent
days. Then maximal rank of tensors is important in theory and applications. In
this paper we consider the maximal rank of 3 tensors. It can be attacked from
various viewpoints, however, we trace the method of Atkinson-Stephens(1979) and
Atkinson-Lloyd(1980). They treated the problem in the complex field, and we
will present various bounds over the real field by proving several lemmas and
propositions, which is real counterparts of their results.Comment: 13 pages, no figure v2: correction and improvemen
Ground state and bias current induced rearrangement of semifluxons in 0-pi long Josephson junctions
We investigate numerically a long Josephson junction with several phase
pi-discontinuity points. Such junctions are usually fabricated as a ramp
between an anisotropic cuprate superconductor like YBCO and an isotropic metal
superconductor like Nb. From the top, they look like zigzags with pi-jumps of
the Josephson phase at the corners. These pi-jumps, at certain conditions, lead
to the formation of half-integer flux quanta, which we call semifluxons (SF),
pinned at the corners. We show (a) that the spontaneous formation of SFs
depends on the junction length, (b) that the ground state without SFs can be
converted to a state with SFs by applying a bias current, (c) that the SF
configuration can be rearranged by the bias current. All these effects can be
observed using a SQUID microscope.Comment: ~8 pages, 6 figures, submitted to PR
Dynamical effects of an unconventional current-phase relation in YBCO dc-SQUIDs
The predominant d-wave pairing symmetry in high temperature superconductors
allows for a variety of current-phase relations in Josephson junctions, which
is to a certain degree fabrication controlled. In this letter we report on
direct experimental observations of the effects of a non-sinusoidal
current-phase dependence in YBCO dc-SQUIDs, which agree with the theoretical
description of the system.Comment: 4 pages, 4 ps figures, to apprear in Phys. Rev. Let
Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach
BACKGROUND: Inhibitors are formed that reduce the fermentation performance of fermenting yeast during the pretreatment process of lignocellulosic biomass. An exometabolomics approach was applied to systematically identify inhibitors in lignocellulosic biomass hydrolysates. RESULTS: We studied the composition and fermentability of 24 different biomass hydrolysates. To create diversity, the 24 hydrolysates were prepared from six different biomass types, namely sugar cane bagasse, corn stover, wheat straw, barley straw, willow wood chips and oak sawdust, and with four different pretreatment methods, i.e. dilute acid, mild alkaline, alkaline/peracetic acid and concentrated acid. Their composition and that of fermentation samples generated with these hydrolysates were analyzed with two GC-MS methods. Either ethyl acetate extraction or ethyl chloroformate derivatization was used before conducting GC-MS to prevent sugars are overloaded in the chromatograms, which obscure the detection of less abundant compounds. Using multivariate PLS-2CV and nPLS-2CV data analysis models, potential inhibitors were identified through establishing relationship between fermentability and composition of the hydrolysates. These identified compounds were tested for their effects on the growth of the model yeast, Saccharomyces. cerevisiae CEN.PK 113-7D, confirming that the majority of the identified compounds were indeed inhibitors. CONCLUSION: Inhibitory compounds in lignocellulosic biomass hydrolysates were successfully identified using a non-targeted systematic approach: metabolomics. The identified inhibitors include both known ones, such as furfural, HMF and vanillin, and novel inhibitors, namely sorbic acid and phenylacetaldehyde
Induced paramagnetic states by localized -loops in grain boundaries
Recent experiments on high-temperature superconductors show paramagnetic
behavior localized at grain boundaries (GB). This paramagnetism can be
attributed to the presence unconventional d-wave induced -junctions. By
modeling the GB as an array of and conventional Josephson junction we
determine the conditions of the occurrence of the paramagnetic behavior.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let
- …
