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Abstract
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Background: Inhibitors are formed that reduce the fermentation performance of fermenting yeast during the
pretreatment process of lignocellulosic biomass. An exometabolomics approach was applied to systematically
identify inhibitors in lignocellulosic biomass hydrolysates.

Results: We studied the composition and fermentability of 24 different biomass hydrolysates. To create
diversity, the 24 hydrolysates were prepared from six different biomass types, namely sugar cane bagasse, corn
stover, wheat straw, barley straw, willow wood chips and oak sawdust, and with four different pretreatment
methods, i.e. dilute acid, mild alkaline, alkaline/peracetic acid and concentrated acid. Their composition and that
of fermentation samples generated with these hydrolysates were analyzed with two GC-MS methods. Either
ethyl acetate extraction or ethyl chloroformate derivatization was used before conducting GC-MS to prevent
sugars are overloaded in the chromatograms, which obscure the detection of less abundant compounds. Using
multivariate PLS-2CV and nPLS-2CV data analysis models, potential inhibitors were identified through establishing
relationship between fermentability and composition of the hydrolysates. These identified compounds were tested
for their effects on the growth of the model yeast, Saccharomyces. cerevisiae CEN.PK 113-7D, confirming that the
majority of the identified compounds were indeed inhibitors.

Conclusion: Inhibitory compounds in lignocellulosic biomass hydrolysates were successfully identified using a
non-targeted systematic approach: metabolomics. The identified inhibitors include both known ones, such as
furfural, HMF and vanillin, and novel inhibitors, namely sorbic acid and phenylacetaldehyde.
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Background

Lignocellulosic biomass, like bagasse, wheat straw, and
corn stover, is the ond generation feedstock for biofuel
production. Compared to fossil fuel, it is abundant, re-
newable and environmental friendly, while compared to
15 generation feedstock, like corn, it does not compete
with world food supply [1,2]. Lignocellulosic biomass is
composed of cellulose, hemicellulose and lignin, of
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which cellulose is the homopolymer of glucose, while
hemicellulose is a heteropolymer mainly composed of
glucose and xylose [3,4]. A pretreatment step is required
to break down the structure of lignocellulosic biomass
and expose cellulose for hydrolysis [5,6]. The hydrolysis
product, so-called biomass hydrolysate, is used as sub-
strate for biofuel production through fermentation pro-
cesses [7]. During most biomass pretreatment processes,
harsh conditions, like high temperature and high pres-
sure, were adopted. This causes sugars and lignin in
biomass hydrolysates to degrade, forming products that
possess inhibitory effects towards fermenting hosts, thus
resulting in reduced growth and productivity [8-11].
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Research has been conducted in other laboratories to
identify compounds in biomass hydrolysates that cause
inhibitory effects [12-14]. For these studies, it was found
that inhibitors fall into three categories, weak acids (e.g.
acetic acid), furans (e.g. furfural, HMF) and phenolic
compounds (e.g. vanillin) [15-17]. A variety of experi-
mental and analytical methods were used in these stud-
ies for identifying inhibitory compounds. A common
feature of these studies was the approach that was used
[18], namely, the selection of inhibitory compounds to
test for their toxicity based on literature research with-
out hydrolysate composition analysis followed by hydrol-
ysate toxicity test towards fermenting microorganisms
[11,19,20]. Besides the identified inhibitors, evidence was
obtained showing that other compounds present in bio-
mass hydrolysates also display inhibitory effects [21,22].
They were observed as unknown peaks in hydrolysate
compositional analysis results, which reduced in size
after detoxification [23]. In this study a non-targeted
exometabolomics approach was applied to identify novel
inhibitory compounds in biomass hydrolysates. Gener-
ally, metabolomics is one of the ‘omics’ tools that stud-
ies the performance of research objects by analyzing
their overall compositions [24,25]. In this study, re-
search objects are lignocellulosic biomass hydrolysates,
which are used as fermentation media for bioethanol
production. The performance of biomass hydrolysates
as fermentation media vary due to the difference in
their compositions, i.e. inhibitory compounds and their
concentrations. By establishing the relationship between
composition and yeast performance in different biomass
hydrolysates statistically, compounds that possess in-
hibitory effect could be indicated in an unbiased way
(Figure 1).

In metabolomics, the search for important metabolites
responsible for a certain response, e.g. fermentability, is
often performed with multivariate data analysis methods
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[26,27]. These multivariate methods are able to search
for the interactions between metabolites that are respon-
sible for the response that is modeled. Partial least
squares (PLS) is a multivariate data analysis method that
is commonly used in metabolomics to search for the im-
portant metabolites [28]. As an extension of the PLS
method, also n-way PLS may be used when the data-set
consists of a time series as in the case of our metabolo-
mics experiments. Rigorous validation of these models is
necessary as multivariate data analysis methods may lead
to false positive correlations [29,30]. Therefore, we de-
cided to use double cross validation (2CV) to obtain un-
biased prediction errors for the (n)PLS models [31,32].

We report here the detailed procedure and the results
of using an exometabolomics approach for identifying
inhibitory compounds in lignocellulosic biomass hy-
drolysates. This includes the batch fermentability of
24 different biomass hydrolysates using baker’s yeast,
S. cerevisiae CEN.PK113-7D, and the analysis results
of the fermentation samples by two GC-MS methods;
the statistical model building procedure for identifying
potential inhibitory compounds, and the toxicity test-
ing results of the identified potential inhibitors. The
results of this study show that of the potential inhibi-
tory compounds indicated by the statistical models, a
large fraction indeed exhibited inhibitory effects on the
growth of fermenting yeast. These compounds consist
of both known inhibitors, such as furfural and HMF,
and novel inhibitors.

Results

Biomass hydrolysates preparation

To successfully identify inhibitory compounds in bio-
mass hydrolysates with statistical models, acquiring
hydrolysates with diverse performance is of importance
[18]. 24 different hydrolysates were prepared from
six different biomass and by using four hydrolysate
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Figure 1 Graphic illustration of the concept of the exometabolomics approach.
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preparation methods to achieve this (see Section Biomass
hydrolysate preparation and fermentation). Among the six
biomass, wheat straw, barley straw and corn stover are agri-
cultural wastes, bagasse is a sugar industry byproduct, and
willow and oak are wood products. Each of the six biomass
was pretreated with four different methods, which used 2%
sulfuric acid, 72% sulfuric acid, lime, and peracetic acid, re-
spectively. The resulting 24 hydrolysates were tested for
their performance as fermentation media on a small scale
(ml), showing that there was a significant diversity among
these 24 hydrolysates [33]. These hydrolysates were pre-
pared in larger quantity (I) for the exometabolomics study.
A batch fermentation of 1 | working volume was carried
out for each hydrolysate based on previously developed
procedures (see Section Biomass hydrolysate preparation
and fermentation and [11]).

Defining phenotypes

Identical batch fermentations were carried out for each
of the 24 different hydrolysates generated. The ferment-
ability was monitored by measuring OD600 (refer to as
‘OD’ in the following text), glucose and ethanol concen-
trations of the samples taken with a fixed time interval.
To quantify the fermentability of the hydrolysates, four
phenotypes were defined, which are lag-phase, glucose
consumption rate (Glu CR), ethanol production rate
(EtOH PR) and ethanol yield (EtOH Y). The definition
of these four phenotypes are given in Equation 1 to 4
(Eql to Eq4), and the measurement results of the
fermentation samples were used to calculate these
phenotypes.

lag-phase(h) = time to reach 2%(ODmax-ODmin)
(Eq1)

Glu CR (g/1/h) = the slope of the linear part of the
glucose consumption curve

(maximum slope)
(Eq2)

EtOH PR (g/1/h) = the slope of the linear part of the
ethanol production curve
(maximum slope)

(Eq3)

EtOH Y(g/g) = EtOHmax/initial glucose
concentration
(Eq4)

As shown in the phenotype definitions, lag-phase has
time as unit (Eql), which represents the duration before
growth began. Since during lag-phase, the fermenting
yeast adapt to the media composition for growth [34], a
longer lag-phase indicates the presence of compounds
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that delay growth. Glucose consumption rate (Glu CR)
is an indicator of the growth rate of the fermenting
yeast, while ethanol production rate (EtOH PR) and
ethanol yield (EtOH Y) describe the productivity of the
fermenting yeast in a specific hydrolysate. For each of
the 24 fermentations, these four phenotypes were calcu-
lated (Table 1). It should be mentioned that growth rate
is one of the most commonly used phenotypes describ-
ing the performance of fermenting hosts. In this study,
instead of using growth rate, we chose Glu CR to de-
scribe growth. This is because OD measurement results
were not easily comparable due to sample characteris-
tics, such as color differences among hydrolysates, and
flocculation. To confirm that Glu CR is a good indicator
of growth rate, we also measured growth rate based on
OD development for some samples (Table 1). It can be
seen that Glu CR has very similar trends as the OD
based growth rate (Additional file 1). Since glucose mea-
surements are more accurate than OD, we have decided
to use Glu CR as an indicator of growth rate.

As shown in Table 1, all 24 hydrolysates had different
glucose concentrations, indicating that biomass type as
well as pretreatment method influenced the biomass
hydrolysis efficiency. In general, mild alkaline (MA) pre-
treated biomass resulted in relatively low glucose con-
centration, while concentrated acid (CA) lead to higher
hydrolysis efficiency [33]. However, based on our previ-
ous results, glucose concentration in the range observed
in Table 1 had no influence on fermentation perform-
ance (results not shown).

The performance of the 24 hydrolysates varied signifi-
cantly as fermentation media, which was consistent with
the screening experiments on milliliter scale [33]. As far
as lag-phase is considered, hydrolysates like Oak-CA and
Willow-CA supported growth almost immediately after
inoculation, while the fermenting yeast needed an adap-
tation period of as long as 10 hours in CS-CA and WS-
CA hydrolysates. The Glu CR of the 24 hydrolysates
ranged from 0.80 (Oak-CA) to 4.63 (WS-CA), which
was comparable to that of EtOH PR (Additional file 2).
This resulted in very similar ethanol yield among the hy-
drolysates, around 0.4 g/g (Table 1), which was also the
ethanol yield of S.cerevisize CEN.PK113-7D in mineral
medium with 20 g/l glucose [35]. This observation sug-
gested that under anaerobic conditions, the effect of in-
hibitory compounds in hydrolysates had little effect on
the ethanol yield of the fermenting yeast. Therefore, this
phenotype was not used in building statistical models
for the purpose of identifying hydrolysate inhibitors.

Some had similar performance in terms of the calcu-
lated phenotypes among the 24 hydrolysate fermenta-
tions (Additional file 2). Since the statistical models to
be used for analyzing the relationship between ferment-
ability and sample composition were based on linear
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Table 1 Fermentability of the 24 biomass hydrolysates, expressed as the calculation results of the defined phenotypes

Hydrolysate Glucose' (g/l) Ethanol® (g/l) Lag-phase® (h) Glu CR* (g/I/h) EtOH PR’ (g/l/h) EtOH Y® (g/g) Growth rate based on OD’

Bag-CA 67.39 20.61 7.5 1.42
Bag-DA 63.33 24.20 6.0 3.64
Bag-MA 58.82 22.71 2.0 3.84
Bag-PAA 5248 19.87 30 252
BS-CA 67.45 30.92 7.5 4.57
BS-DA 49.87 20.95 6.5 3.63
BS-MA 42.56 1840 6.0 3.05
BS-PAA 53.50 22.22 3.0 2.96
CS-CA 65.63 26.62 10.5 3.21
CS-DA 42.80 18.74 5.5 343
CS-MA 32.83 15.85 6.5 335
CS-PAA 50.29 20.84 35 238
Oak-CA 66.72 12.06 1.5 0.80
Oak-DA 38.22 15.27 5.0 241
Oak-MA 44.35 19.49 25 343
Oak-PAA 60.80 25.97 3.0 273
Willow-CA 31.58 13.60 1.0 4.26
Willow-DA 45.15 17.68 75 2.74
Willow-MA 23.50 10.76 45 268
Willow-PAA 51.30 22.81 55 245
WS-CA 60.54 24.71 9.0 4.63
WS-DA 58.29 24.83 4.5 3.47
WS-MA 32.12 13.95 6.5 4.01
WS-PAA 5194 2161 35 303

0.44 0.306 2.42
1.52 0.382 4.61
1.58 0.386 5.73
0.71 0.379 2.76
1.73 0.458 7.39
1.42 0.420 5.66
141 0432 *
1.03 0.415 5.12
1.32 0.406 4.73
1.49 0.438 6.98
1.32 0.483 7.92
1.03 0414 4.53
0.29 0.181 2.1
0.98 0.400 5.37
1.55 0.439 7.52
1.12 0.427 3.75
1.10 0431 14.04
1.14 0.392 5.72
1.29 0458 *
1.05 0.445 5.03
1.87 0.408 7.6
1.64 0.426 6.05
1.92 0.434 11.37
1.27 0416 548

'Glucose concentration of the 24 hydrolysates; *final ethanol concentration; 3(Eq1); “glucose consumption rate (Eq2); *ethanol production rate (Eq3); ®ethanol yield
(Eq4); "the slope of the linear part of the OD% curve. *OD measurement was not possible due to flocculation; bold: fermentations that are selected for sample

compositional analysis.

regression, it is important to reduce overrepresentation
of certain phenotype classes. In addition, it is also bene-
ficial to minimize the amount of samples for exometabo-
lomics analysis. Therefore, from the 24 fermentations,
16 were selected based on the variations in their pheno-
types, biomass type and pretreatment method. The se-
lected 16 hydrolysates contain all six biomass types and
all four biomass pretreatment methods (Table 1), and
the fermentability of these selected hydrolysates show a
more or less even spread of the fermentation phenotypes
(Additional file 2).

Hydrolysate fermentation sample analysis

After quantifying the performance of the hydrolysate
fermentations with the four phenotypes, cell free time-
point samples of the 16 selected fermentations were ana-
lyzed for their overall compositions. These samples were
chosen based on the criteria that they should uniquely
represent the whole fermentation process. The five
fermentation time-point samples are listed in Table 2,

which selection was based on the three fermentation
phases, namely lag-phase, growth-phase and stationary-
phase. The division of the three fermentation phases was
consistent with the definition of the phenotypes, ie. the
end of lag-phase is when OD reaches 2% of the maximum
OD, the end of growth-phase is when glucose consumption
is completed, and the duration of stationary-phase is fixed
at 10 hours after the end of growth phase. In this way, a
total of 80 samples from 16 hydrolysate fermentations were

Table 2 The five fermentation time samples for
compositional analysis with the two GC-MS methods

t1 Beginning of
fermentation

Immediately after inoculation

t2 End of lag-phase Time needed to reach 2% (ODmax-ODmin)

Time needed to consume half of the initial
glucose

t3  Growth mid-point

t4  Growth end point Time needed to consume all glucose

t5 Stationary phase 10 hours after growth end point
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selected for compositional analysis. Overall fermentation
durations were within a 20 to 70 hours timeframe.

The focus of the compositional analysis was to identify
potential inhibitory compounds in hydrolysate samples,
which are believed to be mainly non-sugar compounds,
such as weak acids, furans and phenols [8,9,15]. GC-MS
was chosen as the analytical tool, as the method is cap-
able of detecting a wide range of these compounds,
including many unknowns [20,36]. A crucial point in
analyzing hydrolysate samples with GC-MS was to re-
move sugars, which are present in large quantities in the
samples and severely interfere with the detection of
non-sugar compounds [13,37]. For this purpose, two
sample work-up methods were developed, using ethyl
acetate extraction orethyl chloroformate derivatization.

Ethyl acetate extraction GC-MS (EA-GC-MS) was pre-
viously described by Heer et al. [13]. The method uses
ethyl acetate (EA) as solvent, in which compounds that
are apolar, e.g. with aromatic rings, are dissolved, while
polar compounds, like sugars, remain in the water phase.
In current study, the hydrolysate samples were extracted
twice with EA to allow adequate recovery of the extracts.
After removing EA phase from the water phase, it was
dried through evaporation, thus concentrated and ready
for analysis with GC-MS.

Only compounds dissolvable in EA were analyzed due
to the nature of this sample work-up method, and since
EA was removed through evaporation, volatile com-
pounds were partially lost. It was found that sample pH
influences the extraction, when pH was raised to above
6.0, significant decrease of recovery was observed with
multiple aromatic standards. Therefore, all hydrolysate
samples were extracted with EA at pH 5.0. In doing
so, the recovery of aromatic compounds was satisfying,
above 90%, while the recovery of furans was rather low
and inconsistent due to evaporation. So the analysis
results of aromatic compounds were considered more
reliable than furans.

Ethyl chloroformate derivatization GC-MS (EC-GC-MS)
was developed in our lab to complement the EA-GC-MS
method. Ethyl chloroformate (EC) was used to convert
acids to their ethyl ester form, thus compounds like
carboxylic acids, amino acids, aromatic compounds
and furans could be detected by MS. EC-GC-MS there-
fore has a larger coverage of compounds compared to
EA-GC-MS, and is easier to operate. But due to the di-
verse reactivity of compounds with EC, it is possible
that compounds present with high concentration could
only be detected with low signal. The involvement of a
derivatization step could also cause a single compound
to have more than one derivatization product, which com-
plicates the characterization of the compound. EC-GC-MS
method not only complemented EA-GC-MS by detecting
small carboxylic acids and furans, but also overlapped with
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EA-GC-MS by detecting aromatic compounds. As far as
aromatic compounds are concerned, it seems that the re-
sults of EA-GC-MS were more reliable due to the reactivity
diversity issue occurring in EC-GC-MS.

After analyzing all 80 samples with both methods, a
‘compound list’ was generated for each method by listing
all peaks clearly visible in the chromatograms. Identities
were assigned to some of the peaks by comparing the
mass spectra of these peaks with the existing GC-MS com-
pound library in our lab. With the EA-GC-MS method, in
total 129 peaks were detected, among which 44 were identi-
fied; while with EC-GC-MS, there were 114 detected peaks,
of which 56 were identified. The majority of the com-
pounds detected by EC-GC-MS method were acids, includ-
ing carboxylic acids, such as levulinic acid and succinic
acid, phenolic acids, like phenylacetic acid and syringic acid,
and 18 amino acids (Additional file 3). EA-GC-MS mainly
detected phenolic compounds, containing phenolic alde-
hydes, alcohols and acids (Additional file 3).

Pseudo-quantities were assigned to all detected peaks
from both identified compounds and unknowns by in-
tegrating their peak areas. Internal standards were
measured in both blank and hydrolysate sample to cor-
rect for sample matrix effect. The peak area difference
between blank and hydrolysate sample of the internal
standards was calculated as a correction-factor, and
was used to correct all the integrated peak areas of the
same hydrolysate type. Thus, compound lists based on
corrected peak areas were formed for both analytical
methods.

Statistical model building

To identify inhibitory compounds in biomass hydrolysates,
relationship between hydrolysate fermentability and fer-
mentation sample composition was studied by building
statistical models. The models used in this study were
partial least square (PLS) and n-way PLS (nPLS), vali-
dated by conducting double cross validation (2CV),
which was done by leave-one-out in the inner and outer
loop [31,38]. The purpose of both models was to point
to compounds that are most responsible for a certain
fermentation phenotype. This was done by predicting
the phenotypes using the data-sets formed through
analyzing fermentation samples with the two GC-MS
methods (see Section Hydrolysate fermentation sample
analysis and Additional file 3).

Lag-phase

Lag-phase is the period before growth takes place in a
fermentation process (Eql), it is mainly influenced by
the initial media composition. During lag-phase, fer-
menting yeast adapts to hydrolysate through adjusting
its composition by either degrading or converting com-
pounds [39,40]. Therefore, it is reasonable to describe
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lag-phase by comparing the composition difference be-
tween sample t1 and t2 (model 1, 2 and 3 in Table 3). In
addition, the composition of sample t1 and t2 represents
the beginning and the end point of the lag-phase
(Table 2), which was also used to build models for pre-
dicting lag-phase (models 4, 5 and 6 in Table 3).

In total, six models were constructed for lag-phase
(Table 3), of which the data-sets of EA-GC-MS and EC-
GC-MS methods were used both separately and com-
bined. This is because the effect of fusing these two
data-sets was unknown. The prediction results of the six
models are shown in Table 4. It can be seen that among
the six models, only ‘model 2’ and ‘model 5" had a Q>
value above 0.5, indicating that these two models are
valid and could be used to predict lag-phase (refer to
PLS-2CV models in Method section for the definition of
the Q* value). As shown in Table 3 that the inputs of
both ‘model 2" and ‘model 5’ were from the EC-GC-MS
data-set, suggesting that the compounds detected by
EC-GC-MS method had more influence on lag-phase
compared to those measured with EA-GC-MS.

Models which use EA-GC-MS data-set failed to pre-
dict lag-phase properly (‘model 1’ and ‘model 4’ in
Table 4), but when combined with EC-GC-MS data-set,
the prediction improved, resulting in models with Q>
value of 0.06 and 0.47 (‘model 3’ and ‘model 6, respect-
ively, in Table 4). As the Q? value of ‘model 6 is very
close to 0.5, this model was still selected, together with
models 2 and 5, to calculate the selectivity ratios (SR)
assigned to each peaks in these data-sets.

For each detected peaks from EC-GC-MS data-set, the
SR values of the three models in bold in Table 4 were
summed, and ranked based on their SR-sum values;
while for each detected peaks in EA-GC-MS data-set,
the SR value of ‘model 6 were ranked (refer to Section
PLS-2CV models in Method section for the definition
of the SR value). The top 40 peaks with the highest
SR-sum values, 20 from EC-GC-MS data-set and 20 from
EA-GC-MS data-set, were considered as the main con-
tributors in predicting lag-phase. Among these 40 peaks,

Table 3 Data-sets used for building PLS-2CV models
auto(v/EAL—/EAY)
auto(v/ECo—VEC)
auto((VERa—VEAR) : (VEGa~VEH)
auto(v/EAn < EAR)
(
(

Lag-phase model 1
Lag-phase model 2
Lag-phase model 3
Lag-phase model 4
Lag-phase model 5 auto(vECH : ECp)

auto(/EA:EA, 1 ECyy 1 ECy)
auto(v/EAy) or auto(vECy)

The two data preprocessing methods were symbolized by ‘v’ (square-root),
and ‘auto’ (autoscaling); ‘.’ indicates that the corresponding data-sets were
combined. EA,: EA-GC-MS data-set of time sample tx, EC,: EC-GC-MS data-set
of time sample tx (tx represents fermentation samples taken at different
time-points; x: 1-5).

Lag-phase model 6
Glu CR and EtOH PR
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the ones with identity were tested for their effects on
the fermenting yeast (Section Potential inhibitory com-
pound testing, Table 5). The detailed ranking procedure
of lag-phase model SR is shown in Additional file 4.

Glu CR and EtOH PR

Unlike lag-phase, samples taken at all five time-points
influence Glu CR and EtOH PR according to their defi-
nitions (Eq2 and Eq3). These phenotypes were modeled
by the data-sets of the five fermentation samples both
individually, using the PLS-2CV model, and collectively,
using the nPLS-2CV model.

PLS-2CV modeled Glu CR and EtOH PR with the
data-sets of individual fermentation samples, which re-
veals the influence of these single time points on these
two phenotypes. The modeling results show that EC-
GC-MS data-sets failed to predict Glu CR and EtOH
PR, as the resulting Q” values were all negative (data not
shown). On the contrary, the EA-GC-MS data-sets of
sample t3, t4 and t5 successfully modeled the two phe-
notypes, as shown in Table 6, the resulting Q> values
were above 0.5. This suggests that, different from lag-
phase, Glu CR and EtOH PR were relating to the com-
pounds detected with EA-GC-MS method. Moreover,
the prediction became meaningful only after time point
t2 (Table 6, Q*> 0), indicating that Glu CR and EtOH
PR were not affected by the initial hydrolysate compos-
ition, but influenced by the composition after lag-phase
and during growth. This confirms that the data-sets of
time point t1 and t2 possess a different structure com-
pared to the other three time points. This structure con-
tains information that could properly describe lag-phase
(Table 4), which ends after time point t2, but failed to
predict Glu CR and EtOH PR, which describe a different
phase of the fermentation process.

To include the effect of hydrolysate composition change
during the fermentation process on Glu CR and EtOH PR,
the five time-point samples were also analyzed collectively,
with the nPLS-2CV model. Consistent with the PLS-2CV
models, the prediction was only valid with EA-GC-MS
data-set (Table 7). Since it was known from PLS-2CV
models that data-set of sample t1 gave negative Q” values
(Table 6), nPLS-2CV models were also built with the data-
set of sample t2 to t5. As shown in Table 7, the predictions
of Glu CR and EtOH PR were improved when sample t1
was excluded from the data-set, indicating that the input of
sample t1 data-set was negative.

Thus, for Glu CR and EtOH PR, three PLS-2CV
models and a nPLS-2CV model were selected respect-
ively for analyzing the contributions of the peaks in
EA-GC-MS data-set to model predictions (models with
‘Bold’ in Table 6 and Table 7). With PLS-2CV models,
similar to lag-phase, SR of the peaks were summed and
ranked. The top 40 peaks with the highest SR values
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Table 4 Lag-phase prediction results and Q* values of the PLS-2CV models shown in Table 3
PLS-2CV Lag-phase Prediction
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Bag-CA 75 6.13 9.28 743 579 6.18 4.96
Bag-DA 6.0 3.36 5.24 461 6.79 4.95 5.53
Bag-MA 20 5.02 3.55 427 421 3.08 2.90
BS-CA 7.5 7.14 7.67 745 742 9.28 8.44
BS-DA 6.5 8.99 5.29 823 949 6.57 7.71
BS-PAA 30 361 4.12 382 3.86 4.67 3.86
CS-CA 10.5 1171 9.44 1091 10.32 10.61 11.33
CS-MA 6.5 -6.10 6.28 -1.36 4.40 6.66 6.25
Oak-CA 1.5 4.25 4.48 443 6.27 6.02 6.19
Oak-DA 50 442 5.70 474 6.16 5.94 5.81
Oak-MA 2.5 3.81 4.00 3.99 -3.28 2.00 -0.54
Oak-PAA 30 539 4.38 5.05 347 2.99 2,55
Willow-DA 7.5 6.83 8.95 761 519 6.70 6.68
Willow-PAA 55 361 6.08 436 7.2 2.19 4.51
WS-CA 9.0 793 8.17 8.00 6.95 6.86 6.18
WS-MA 6.5 6.58 2.01 397 438 7.95 7.59
o -1.01 0.54 0.06 0.05 0.51 0.47

Bold: models selected for analyzing the SR of the peaks in the data-sets.

were considered as the main contributors of PLS-2CV
models of either Glu CR or EtOH PR. While with nPLS-
2CV models, the regression coefficient (‘reg’) values
were used for ranking. The top 40 peaks with the highest
absolute ‘reg, 20 with positive values and 20 with nega-
tive values, were considered as the main contributor of
nPLS-2CV model of either Glu CR or EtOH PR. Among
the selected peaks, the ones with identity were tested
for their effects on the fermenting yeast (Section Poten-
tial inhibitory compound testing, Table 5). The detailed
ranking and selection procedure of the testing com-
pounds are shown in Additional file 5. Interestingly,
more than 80% of the compounds identified by Glu CR
and EtOH PR models are identical. This indicates,
from a statistical point of view, the correlation between
Glu CR and EtOH PR.

Potential inhibitory compound testing

Two groups of potential inhibitory compounds were
identified, one from lag-phase models and the other
from Glu CR and EtOH PR models, through construct-
ing statistical models and analyzing the compounds that
contribute the most to the models with valid phenotype
predictions. Growth tests using Bioscreen C Analyzer
were conducted in mineral medium (MM) with 20 g/l
glucose to study the effect of these compounds on the
fermenting yeast, S. cerevisiaze CEN.PK113-7D. The po-
tential inhibitory compounds were added individually

with the following three concentrations, 0.2, 0.5 and
1.0 g/l, respectively.

It should be noted that these testing concentrations
could be much higher compared to that in actual bio-
mass hydrolysates, i.e. less than 0.1 g/l [11,14,41,42]. The
toxicity threshold of a specific compound can be much
lower compared to that was tested in synthetic medium
due to the synergistic effects present in biomass hydroly-
sates. Although the testing concentrations were higher
compared to that in biomass hydrolysates, the testing re-
sults still provide meaningful information.

The first group of compounds shown in Table 5 were
identified by all three phenotype models, among which,
furfural resulted in longer lag-phase at all three concen-
trations tested, while sorbic acid and syringaldehyde re-
duced growth rate. Suberic acid exhibited positive effect
towards the fermenting yeast, mainly through shortening
lag-phase. Since this phenomenon was only observed in
MM, but not in YPD, which a much richer medium
compared to MM, we reason that the acid was probably
used as a nutrient by the yeast. HME, though known as
an important inhibitor in biomass hydrolysates [43-45],
only exhibited inhibitory effect at 1.0 g/l on the growth
rate of the fermenting yeast (Table 5). However, HMF
seems to prolong lag-phase when tested together with
other compounds identified by the lag-phase models. It
can be seen that HMF triggered synergistic effect with
levulinic acid, 2-furoic acid and pantoyllacton, respect-
ively, at 0.5 g/l (Table 8). This may be the reason why



Table 5 Inhibitory effects of the compounds identified by lag-phase, Glu CR and EtOH PR models, tested using Bioscreen C Analyzer

Reference medium (MM with 20 g/l glucose) LP GR oD
7h 0.105 1.2
Compounds Structure 0.2 g/l 0.5 g/l 1.0 g/l
LP GR oD LP GR oD LP GR oD
Compounds identified by all 3 phenotype models
Furfural 9] /O 10h — — 15h — — 30h No growth
()~
HMF o — — — — — — — < 20% —
AW
Sorbic acid o] — < 60% < 80% — < 60% < 80% No growth
Hsc/wl\or—u
Syringaldehyde Z0 — — — — — — — < 60% < 80%
HyCO OCHj,
OH
Suberic acid o 3h 110% 110%
HOJ\/\/\/\H’OH
o]
Compounds identified by lag-phase model
Benzoic acid O; EOH — < 60% < 80% — < 40% < 80% — < 40% < 60%
Compounds identified by Glu CR and EtOH PR models
Phenylacet aldehyde : ~_20 20h < 80% — No growth No growth
Vanillin O M — — — 11 h < 80% — 30 h No growth
i\’j\o/c”a
OH
4-hydroxybenzaldehyde OjEH — — — 95h < 80% — 11 h < 60% < 80%
OH
Dihydroxy benzene OH — — — — — — — < 80% —

©/OH

TT/1/0SL9-T L L /WO [RIIUSIPIIOIG MMM//:d1Yy

ZThL ‘710z ABojouydalolg DG b 13 eyz

91 jo g abeq



Table 5 Inhibitory effects of the compounds identified by lag-phase, Glu CR and EtOH PR models, tested using Bioscreen C Analyzer (Continued)

Conifer aldehyde HO — — — 23 h — No growth
o
Compounds identified by Glu CR model
Ferulic acid o] — — — — — < 40% < 80%
CHJOWOH

HO

Benzaldehyde OE ;H — — — 95h < 80% < 80% < 80%
Compounds identified by EtOH PR model
Salicylic acid H — < 80% < 80% — < 60% < 60% < 60%
H
No effect
2-furoic acid I\ Pantolactone o) o o]
OH Mcna
o) HO
HyC 0
) N HaC OH

Furfuryl alcohol OH 2-furanmethanol acetate 0 HO\/@\/OH

: O :

\ 0
P-coumaric acid Q Homovanillic acid o WO
= HO
HO
OCH3
OH
3-phenyllactic acid o] 4-hydroxybenzoic acid Oy, -OH O OH
OH
OH O,CHg
OH OH

4-Hydroxyphenylaldehyde

Not tested

Phloretic acid

5-HMF methyl keton

LP: lag-phase: time needed to reach 2% (ODmax-ODmin) (h), GR: growth rate: the slope of the linear part of the OD curve (OD/h), OD: final OD. Values with% are relative growth rate and final OD compared to that in

reference medium. ‘—": no effect compared to reference medium.

The compounds indicated in ‘jtalic’ were originally identified by their (converted and less toxic) alcohol forms; the compounds indicated in ‘bold” were saturated when 1 g/l solutions were prepared at the
fermentation temperature, in these cases, besides the saturated solution, a 2- and 5- fold dilution was used, represented in the 0.5 and 0.2 g/l columns, respectively; the ‘italic effects’ were NOT observed when tested

in YPD medium.
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Table 6 Glu CR and EtOH PR prediction results and Q? values of the PLS-2CV models
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PLS-2CV Glu CR Prediction EtOH PR Prediction
11 2 t3 t4 t5 tl 2 t3 t4 t5

Bag-CA 142 286 230 2.08 1.77 1.08 044 1.04 092 0.81 0.81 0.47
Bag-DA 3.64 262 3.07 3.00 3.01 3.56 1.52 0.93 1.15 1.18 1.18 1.39
Bag-MA 384 3.12 328 3.64 3.45 3.22 1.58 138 113 1.51 1.51 1.40
BS-CA 457 238 394 4.15 3.71 3.88 1.73 091 161 1.70 1.70 1.61
BS-DA 3.63 4.60 399 3.73 3.93 3.45 142 1.99 1.72 1.57 1.57 1.47
BS-PAA 296 239 2.80 273 2.81 2.65 1.03 1.04 1.20 1.13 1.13 1.13
CS-CA 3.21 298 351 3.71 3.24 3.51 1.32 1.12 131 1.44 1.44 1.35
CS-MA 335 4.21 452 4.00 4.23 4.31 1.32 1.85 2.03 1.81 1.81 1.89
Oak-CA 0.80 2.88 276 1.77 1.94 2.00 0.29 1.03 1.09 0.57 0.57 0.66
Oak-DA 241 2.54 3.04 2.63 1.83 235 0.98 123 146 1.22 1.22 1.22
Oak-MA 343 267 2.70 3.03 2.98 3.12 1.55 1.01 1.04 1.20 1.20 1.25
Oak-PAA 2.73 295 3.01 2.63 2.59 2.66 112 113 1.18 0.99 0.99 1.00
Willow-DA 2.74 2.78 261 2.89 3.31 2.83 1.14 1.15 0.99 1.16 1.16 1.13
Willow-PAA 245 3.70 3.06 3.21 3.48 3.39 1.05 1.46 1.23 1.32 1.32 1.35
WS-CA 4.63 343 3.74 3.49 3.67 3.49 1.87 0.93 142 1.33 1.33 1.32
WS-MA 4.01 4.10 329 3.47 3.43 3.37 1.92 1.63 1.29 1.41 1.41 1.37
o’ -0.161 0374 0.676 0.574 0.607 -0315 0.044 0.539 0.500 0.555

Bold: models selected for analyzing the SR of the peaks in the EA-GC-MS data-sets.

Table 7 Glu CR and EtOH PR prediction results and Q?
values of the nPLS-2CV models

nPLS-2CV Glu Prediction EtOH Prediction
CR t1-t5 t2-t5 PR t1-t5 t2-t5
Bag-CA 142 1.55 1.41 044 117 0.59
Bag-DA 3.64 2.87 3.07 152 1.05 1.16
Bag-MA 384 3.16 3.25 1.58 1.27 1.32
BS-CA 457 3.76 3.67 1.73 1.53 1.51
BS-DA 363 4.02 3.91 142 1.69 1.64
BS-PAA 296 279 2.88 1.03 1.20 1.23
CS-CA 3.21 349 3.54 132 1.35 1.36
CS-MA 335 4.40 4.37 132 2.00 2.00
Oak-CA 0.80 1.96 1.86 0.29 0.65 0.62
Oak-DA 241 228 2.35 0.98 1.17 1.08
Oak-MA 343 271 2.86 1.55 1.05 1.1
Oak-PAA 273 2.81 2.78 1.12 1.08 1.07
Willow-DA 274 283 2.90 1.14 1.16 1.18
Willow-PAA 245 3.68 3.55 1.05 149 1.42
WS-CA 4.63 370 3.64 1.87 140 1.39
WS-MA 401 358 3.46 1.92 141 1.37
o’ 0.526 0.580 0.182 0.419

Bold: models selected for analyzing the SR of the peaks in the
EA-GC-MS data-sets.

HMEF was identified, though little effect was observed
when tested individually.

Furfural was identified as a key toxin in biomass hydroly-
sates [13,46], and consistent with the current study, its
main inhibitory effect was elongating lag-phase [47-49]. It
was reported earlier that furfural as well as HMF are con-
verted to their alcohol form (furfuryl alcohol and HMF al-
cohol) and eventually acid form (furoic acid and HMF acid)
by the fermenting yeast due to detoxification [39,40]. This
was also observed in this study. During lag-phase, the con-
centration of furfural and HMF decreased, while their alco-
hols and acids were formed. Since the concentration of
furfuryl alcohol and 2-furoic acid is showing an opposite
pattern compared to furfural, and HMF alcohol to HME, as
could be expected, these compounds were also identified
by analyzing the lag-phase models (Table 5).

The potential inhibitors identified by Glu CR and EtOH
PR models were mainly phenolic compounds (Table 5). It is
known from previous research that the toxic form of a
phenolic compound is often the aldehyde, which is con-
verted to its alcohol during the fermentation process due to
detoxification [20,22,50]. Therefore, possible conversion of
the phenolic alcohols identified by the models was checked.
For those phenolic alcohol compounds with increased con-
centrations during the fermentation process, the aldehyde
forms were used in the growth tests, assuming that the
alcohols were the conversion products. These phenolic



Zha et al. BMC Biotechnology 2014, 14:22
http://www.biomedcentral.com/1472-6750/14/22

Page 11 of 16

Table 8 Compounds that caused synergistic effect with furfural or HMF at 0.5 g/l, tested using Bioscreen C Analyzer

Reference medium LP GR oD
(MM with 20 g/l glucose) 7h 0.105 1.2

Added compound Added compound only Added compound + furfural or HMF

LP GR oD LP GR oD

Furfural HMF — — — 19h < 80% —
0.5 g/l HMF acid — — — 16.5 h — —
15h Salicylic acid — < 60% < 80% 15h < 40% < 60%
90% Vanillin 11h < 80% — 17 h < 80% —
100% Syringaldehyde — — — 16.5 h < 80% —

Levulinic acid — — — 9h < 80% —
HMF 2-furoic acid — — — 85h < 80% —
0.5 g/l Pantoyllacton — — — 9h < 80% —
7h Salicylic acid — < 60% < 80% 85h < 40% < 60%
100% Vanillin 11h < 80% — 11 h < 60% —
100% Syringaldehyde — — — 11 h — —

LP: lag-phase: time needed to reach 2% (ODmax-ODmin) (h), GR: growth rate: the slope of the linear part of the OD curve (OD/h), OD: final OD. Values with% are
relative growth rate and final OD compared to that in reference medium. ‘—’: no effect compared to reference medium; the ‘bold effects’ were

relatively significant.

aldehydes are marked in italic in Table 5. In agreement with
former studies, the compounds exhibited inhibitory effects
were mostly aldehydes and acids (Table 5). The major in-
hibitory effects were reduced growth rate and lower final
OD. Phenylacetaldehyde, vanillin and conifer aldehyde
caused growth deficiency at 1.0 g/I (0.5 g/l for phenylacetal-
dehyde, Table 5).

Besides the compounds listed in Table 5, another
group of compounds identified by the models was the
amino acids, of which concentrations decreased during
the fermentation process. This provides the possibility
that the depletion of amino acids in hydrolysates wors-
ened the fermentation performance of the fermenting
yeast. However, as growth of the fermenting yeast in hy-
drolysates was not improved when amino acids were
added (data not shown), this was apparently not the
case. Another explanation would be that the presence of
amino acids and possibly other nutrients compensates
the inhibitory effects of the inhibitors. This assumption
was verified by comparing the inhibitory effects of the
compounds listed in Table 5 in MM and YPD medium,
which contains abundant peptides and nutrients com-
pared to MM. The inhibitory effects of all the tested
compounds alleviated in YPD medium, particularly, the
effects in italic in Table 5 were absent in YPD. This obser-
vation indicates that the toxicity of inhibitors was culture
medium dependent, suggesting that the fermentability of
biomass hydrolysates could be improved by adding extra
nutrients like yeast extract [51].

Furfural and HMF are the two most studied inhibitors
in biomass hydrolysates, in terms of their inhibitory ef-
fects as well as their conversion pathways [13,40,45].

However, research on the synergistic effects of these two
compounds with other potential inhibitors in hydroly-
sates was seldom tackled. In this study, the combined
inhibitory effects of furfural or HMF with one other po-
tential inhibitory compound were tested using Bioscreen
C Analyzer at 0.5 g/l in MM with 20 g/l glucose, and the
compounds demonstrated synergistic effect with either
furfural or HMF are listed in Table 8. It can be seen that
HMEF caused a notable synergistic effect with levulinic
acid, 2-furoic acid, pantoyllacton and syringaldehyde, re-
spectively. These compounds showed no inhibitory ef-
fect individually at 0.5 g/I, but when added together with
HME, they extended lag-phase as well as reduced growth
rate (Table 8). Compared to HMEF, furfural combined with
the selected compounds caused minor negative synergism,
since no significant lag-phase increase or growth rate re-
duction was observed when an extra compound was added
(Table 8).

Discussion

Lignocellulosic biomass is a natural resource that has
the potential to become the major feedstock for biofuel
production [52,53]. A metabolomics approach was adopted
in this study to identify inhibitory compounds in biomass
hydrolysates. Compared to targeted methods, no com-
pound pre-selection was made with the metabolomics
approach, so that the inhibitor identification was not influ-
enced by prior knowledge [18,26]. The study results show
that the metabolomics approach successfully identified
compounds that influence the growth of the fermenting
yeast, S. cerevisiae CEN.PK 113-7D. Some compounds pro-
longed lag-phase, like furfural and vanillin, while others
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reduced growth rates, such as HMF and benzaldehyde.
Interestingly, without pre-selection, compounds that were
previously known as inhibitors in biomass hydrolysates
were identified in this study. This confirms that meta-
bolomics is a relevant approach in studying the com-
position and identifying inhibitors of lignocellulosic
biomass hydrolysates.

As the analysis targets were potential inhibitory com-
pounds in biomass hydrolysates, which are weak acids,
furans and phenolic compounds [15-17], GC-MS was
chosen as the analytical tool [18]. Either ethyl acetate
(EA) extraction or ethyl chloroformate (EC) derivatiza-
tion was conducted prior to sample analysis to prevent
sugars from being in the final extracted hydrolysate
samples. Due to the property difference of these two sample
preparation methods, their target compound groups were
also different. As mentioned in section Hydrolysate fermen-
tation sample analysis, the EA method had reliable meas-
urement for aromatic compounds, while the EC methods
mainly detected carboxylic acids and furans. This difference
in analytical method in relation to metabolomics results
was also seen during statistical model building, as EA-GC-
MS data-sets could predict Glu CR and EtOH PR properly,
but failed to model lag-phase on its own, which was validly
predicted by EC-GC-MS data. Accordingly, furans were
mainly identified to prolong lag-phase, and aromatic com-
pounds were mostly responsible for reduced growth. These
results suggest that in a metabolomics study, it is important
to have a wide coverage of detectable compounds, so that
the chance of overlooking potential target compounds can
be reduced [27,54]. And one way of achieving this is to use
multiple analytical tools for measuring the same sample.

Furfural and HMF were reported as the two most im-
portant inhibitors in biomass hydrolysates, which delay
as well as reduce growth [13,40,48,55]. In the growth
test of this study, it was found that furfural indeed pro-
longed lag-phase at a concentration of 0.2 g/l, but HMF
did not display any inhibitory effect until its concentra-
tion reached above 0.5 g/l (Table 5). However, when
tested combined, HMF enhanced the negative effect of
furfural on lag-phase, and reduced growth rate. When
HMEF was tested combined with other compounds, which
showed no effect individually, like levulinic acid, 2-furoic
acid and pantoyllacton, inhibition took place, resulting in
extended lag-phase and decreased growth rate (Table 8).
These observations suggest that HMF probably functions
as a co-inhibitor in biomass hydrolysate, for which inhib-
ition is mainly the result of synergistic effects. Furthermore,
synergistic effect reduces the threshold concentration for
inhibition. For instance, both HMF and syringaldehyde
showed toxicity only at 1.0 g/l towards the fermenting
yeast, but when tested combined, the inhibitory effect
was present at 0.5 g/l (Table 5). So it is possible that
when multiple inhibitors are present, the toxicity threshold
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of HMF and syringaldehyde reduce to below 0.1 g/l, which
is close to their reported concentration in biomass hydroly-
sates [11,14,41,42].

A group of compounds that were identified with Glu
CR and EtOH PR models showed no effect in the
growth test. This group of compounds consist of aro-
matic acids (Table 5). Earlier studies demonstrated that
aldehyde was the most toxic form of aromatic com-
pounds, the corresponding acids were less, while the al-
cohol form was the least toxic [20,22,50]. This was
confirmed in this study, and was clearly illustrated with
vanillin and vanillic acid, of which the acid form had no ef-
fect, while the aldehyde form almost abolished growth at
1.0 g/l (Table 5). Besides the identification of previously re-
ported inhibitors in biomass hydrolysates [9,15,17,50,55,56],
two new compounds were found to be toxic, which are sor-
bic acid and phenylacetaldehyde. As shown in Table 5, both
compounds already showed significant inhibitory effect on
growth at 0.2 g/l. The high toxicity towards the fermenting
yeast indicates that these two compounds are important in-
hibitors in biomass hydrolysates. Though not recorded as
hydrolysate inhibitors, sorbic acid was described as a pre-
servative weak acid, which disturbs yeast growth through
uncoupling mechanism [8,55,57,58], while phenylacetalde-
hyde was known of having antibiotic activity in maggot
therapy [59]. It should be mentioned that the enzyme cock-
tail used in this study also contains sorbic acid, so the sor-
bic acid detected in biomass hydrolysates was partially from
addition of the hydrolyzing enzyme in most feedstock
hydrolysates.

Of the potential inhibitory compounds identified by the
statistical models, about half are unknowns. Some of these
compounds are on the very top of the ranking lists, see
Additional files 4 and 5. Since most of the known com-
pounds identified by the models showed inhibitory effect
towards the fermenting yeast in growth tests, it is expected
that there are also important/novel inhibitors among the
unknown compounds. Identification needs to be conducted
for these unknown compounds to verify this, which will be
the next step in identifying lignocellulosic biomass hydrol-
ysate inhibitors.

The inhibition property of these compounds was linked
to their presence in lignocellulosic biomass hydrolysates
through applying metabolomics approach. To our know-
ledge, this is the first systematic study on identifying inhibi-
tory compounds in lignocellulosic biomass hydrolysates
using a non-targeted approach.

Conclusion

Inhibitory compounds in lignocellulosic biomass hydro-
lysates were successfully identified through applying an
exometabolomics approach. The identification was con-
ducted by relating the fermentability of biomass hydroly-
sates with their composition using statistical models, (n)
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PLS-2CV. The non-sugar composition of biomass hy-
drolysates were analyzed with two GC-MS methods,
using ethyl acetate extraction and ethyl chloroformate
derivatization to remove sample sugar contents, respect-
ively. Besides the known inhibitors, sorbic acid and
phenylacetaldehyde were for the first time identified as
inhibitors among the identified compounds in lignocel-
lulosic biomass hydrolysates.

Methods

Biomass hydrolysate preparation and fermentation

24 different hydrolysates were prepared from six types
of biomass, by using four different hydrolysate prepar-
ation methods. The six types of biomass were sugar
cane bagasse (Bag) (Zillor, Brazil), corn stover (CS)
(University of Cape Town, South Africa), wheat straw
(WS) (Oostwaardshoeve, The Netherlands), barley straw
(BS) (Oostwaardshoeve, The Netherlands), willow wood
chips (Willow) (Oostwaardshoeve, The Netherlands)
and oak sawdust (Oak) (wood-flooring supplier ESCO,
The Netherlands). Prior to pretreatment, biomass (except
oak sawdust) was ground to pieces of average length
3 mm and dried at 80°C for at least 16 hours. To pre-
pare 1 1 hydrolysate, 300 g dried biomass was used. The
four hydrolysate pretreatment methods were dilute acid
(2% H,SO,), mild alkaline (3% Ca(OH),), alkaline/peracetic
acid and concentrated acid (72% H,SO,). The biomass pre-
treated with the first three methods was hydrolyzed enzy-
matically, using Accellerase 1500 (Genencor®), while acid
hydrolysis was used for biomass pretreated with concen-
trated acid (40% and 15% H,SO,). The detailed pretreat-
ment and hydrolysis procedure was described in Zha et al.
(2012) [33]. After hydrolysis, solid content was separated
from the hydrolysate by filtration, and the filtrated hydrol-
ysate was sterilized using filter sterilization and stored at
4°C before use.

Batch fermentations were carried out in 2 1 New
Brunswick fermentors, using 1 | of sterilized hydrolysate
as substrate. The fermenting yeast was Saccharomyces.
cerevisiae CEN.PK 113-7D (CBS 8340), and the inocu-
lum was prepared in a 500 ml Erlenmeyer flask. The
cells were harvested by centrifugation after incubating
overnight in mineral medium (MM) [60] with 20 g/1 glu-
cose, and inoculated into fermentors with density of
0.1 g cell dry weight per 1 | hydrolysate. All fermenta-
tions were carried out at 30°C, under anaerobic condi-
tions by sparging 0.5 1/min N, continuously, and pH was
set at 5 by adding 1 M H,SO,4 or 2 M KOH.

For each of the 24 hydrolysates, one batch fermenta-
tion was conducted after checking its reproducibility
[18]. During the whole fermentation process, CO, con-
centration in the off-gas was monitored automatically
and samples were taken at fixed time intervals. These
samples were kept at 4°C and used to measure optical
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density at 600 nm (OD), glucose and ethanol concentra-
tion with either Cobas® Mira Plus (Roche) or Arena® 20
Analyzer (Thermo Scientific).

Hydrolysate fermentation sample analysis

For each of the selected hydrolysate fermentations, cell
free time samples were chosen for analyzing their overall
compositions. Two GC-MS methods, namely ethyl acet-
ate extraction (EA)-GC-MS and ethyl chloroformate
derivatization (EC)-GC-MS, were used to analyze the
fermentation samples.

For EA-GC-MS, the extraction was done by adding
550 pl ethyl acetate into 0.5 ml sample and vortex for
2 min. The mixture was centrifuged to separate the ethyl
acetate fraction, of which 400 pl was transferred to a vial
and dried under N,. The following internal standards in
ethyl acetate were added to the same vial: phenylethanol-
D5, cinnamic acid-D5 and hydroxybenzaldehyde-D4. The
extraction and centrifugation process was repeated, and
from the ethyl acetate fraction, another 400 pl was trans-
ferred to the same vial, after drying with N, the following
internal standards in pyridine were added: alanine-D4 and
citric acid-D4. The extract was then oximized by add-
ing 30 pl 56 mg/ml ethoxyamine - HCI, and incubating
at 40°C for 90 min. Followed by adding dicyclohexylph-
talate (DCHP) and difluorobiphenyl (DFB) in pyridine
as injection standard, the oximized extract was sily-
lated by adding 100 pl N-methyl-N-trimethylsilyl-trifluor-
oacetamide (MSTFA), and incubating at 40°C for 50 min.
Measurement was carried out by 1 pl splitless injection in
the PTV injector of an Agilent® 7890A GC with an
Agilent® 5975C MS as detector. The analytical column used
was a HP-5MS column (30 m x 0.25 mm x 0.25 pm).

For EC-GC-MS, the sample pH was brought above 10
by adding NaOH solution, followed by the addition of
the following internal standards in pyridine: leucine-D3,
succinic acid-D4 and cinnamic acid-D5. The injection
standards, DCHP and DFB in pyridine, and 300 pl etha-
nol were also added to the sample. Then the ethylester
formation was done by two rounds of adding 40 pl ethyl
chloroformate into the sample and shaking it vigorously
by hand for 15 sec. The reaction was stopped by adding
750 pl dichloromethane and 500 pl 1 M bicarbonate buf-
fer. The formed derivates were extracted with dichloro-
methane, and the extraction was dried with Na,SO,.
The measurement was carried out the same way as in
EA-GC-MS method. The analytical column used was a
DB-1 column (30 m x 0.32 mm x 1 pm).

The analysis results of EA-GC-MS and EC-GC-MS
were reported separately in data-sets, with detected
peaks as row and fermentation sample as column. The
reported values were areas of the detected peaks after
correction with internal standards.
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Statistical model building

The two statistical models used were partial least square
with double cross validation (PLS-2CV) [31] and n-way
PLS with double cross validation (nPLS-2CV) [38]. The
2CV version of the nPLS model was developed in house.
The models were written as m-files in MATLAB envir-
onment (R2012a) with PLS toolbox 2.0 (Eigenvector).

PLS-2CV models

PLS-2CV is a linear regression model, which predicts the
fermentation phenotypes with the GC-MS analysis results
of the fermentation samples (data-sets). The PLS-2CV
models were assessed by calculating the so-called Q” values,
which indicate the prediction ability of the data-sets for a
specific phenotype [31]. The maximum value of Q* is 1,
representing that the model could perfectly predict the phe-
notypes. Generally, models with Q®> 0.5 were selected for
analyzing the selectivity ratios (SR) assigned to each peaks
in the data-sets. Similar to regression coefficient (‘reg’), SR
is a measure for variable importance in discrimination
models. Contrary to ‘reg, SR is corrected for the influence
of interfering compounds that are not related to the mod-
eled response [61,62]. Peaks with the highest SR values
were considered having the primary contribution to the
model building. Among these peaks, the identified ones
were selected as potential inhibitory compounds, and tested
in Bioscreen C Analyzer for their effects on the fermenting
yeast (see Section Potential inhibitory compound test).

To model lag-phase, the data-sets containing the first two
fermentation samples (t1 and t2) were used. As listed in
Table 3, the difference as well as the combination of t1
and t2 data-sets were used to build PLS-2CV model.
EA-GC-MS and EC-GC-MS data-sets were modeled
both separately and combined. Thus, for lag-phase, in
total six PLS-2CV models were built (Table 3). These
data-sets were preprocessed by conducting a ‘square-
root’ transformation to reduce the nonsymmetrical dis-
tributions of the peak areas for all compounds, and this
also homogenizes the heteroscedastic measurement
error. Afterwards, an ‘auto-scaling’ was carried out to
reduce the effect that compounds with large peak areas
would dominate the regression models [63,64]. The
phenotype values were ‘mean-centered’ before data
analysis.

To model glucose consumption rate (Glu CR) and etha-
nol production rate (EtOH PR) (see Eq2 - 4), the data-sets
of all five fermentation samples were used individually
(t1 to t5, see Table 2). The data preprocessing was conducted
in the same way as by lag-phase data-sets (Table 3).

nPLS-2CV models

N-way PLS (nPLS) handles multiway data-sets, and was
used to model glucose consumption rate (Glu CR) and
ethanol production rate (EtOH PR). In this study, the
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data-sets were three-way, the three ways were (1) fer-
mentation batch, (2) time samples of each batch, and (3)
analysis results of each sample. The analysis results of
EA-GC-MS and EC-GC-MS methods were used both
separately and combined. Similar to PLS-2CV model,
the data-sets were arranged in two way and prepro-
cessed by conducting ‘square-root’ and ‘auto-scaling’
before transforming to the three-way structure. The
phenotype values were ‘mean-centered’ before model
building. The nPLS-2CV models were assessed by calcu-
lating the Q> values. In most cases, models with Q> > 0.5
were selected for analyzing the regression coefficient
(‘reg’) of each peak in the data-sets, as SR for nPLS has
not yet been developed. Peaks with highest absolute ‘reg’
values were considered having the most contribution for
predicting the phenotypes. Among these peaks, the
identified ones were selected as potential inhibitory
compounds, and tested in Bioscreen C Analyzer for their
effects on the fermenting yeast (see Section Potential in-
hibitory compound test).

Potential inhibitory compound test

Solutions of potential inhibitory compounds were pre-
pared in both MM with 20 g/l glucose and YPD (Yeast
extract Peptone Dextrose) medium with concentrations
of 0.2, 0.5 and 1.0 g/I. For those compounds saturated at
1.0 g/l, these saturated solutions (100%) and 2- or 5-fold
dilutions resulting in 50% and 20% of the saturated con-
centration were used. Therefore, in these cases (shown
in bold in Table 5) the exact concentrations are not
known.

The prepared solutions were adjusted to pH 5.0 and used
as media in the growth test of the fermenting yeast, S. cere-
visiae CEN.PK 113-7D. The growth test was conducted in
triplets in honeycomb plates, using Bioscreen C Analyzer
(Labsystems QY). Testing volume was 400 pl, and testing
condition was 30°C, no shaking. Growth was monitored by
measuring OD 420-580 nm with a time interval of 15 min
during the whole experiment. The detailed procedure of
Bioscreen test is described in Zha et al. [33].

Additional files

Additional file 1: Figure S1. Description of data:Trends comparison
between growth rate calculated based on OD and glucose consumption
rate. Growth rate: the slope of the linear part of the OD% curve (green);
glucose consumption rate (Glu CR): the slope of the linear part of the
glucose consumption curve (Eq2) (red).

Additional file 2: Figure S2. The calculation results of the four
phenotypes, sorted from the smallest to the largest. The ‘red’ bars are the
selected 16 fermentations for exometabolomics analysis.

Additional file 3: EA-GC-MS results (sheet 1), and EC-GC-MS results
(sheet 2). Description of data: analysis results of the fermentation time-
point samples with EA-GC-MS and EC-GC-MS methods. The 1° column is
the sample names, the 1°" row is the detected peaks, the data are peak

areas after correction with internal standard.
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Additional file 4: Lag-phase modeling results; Description of data:
'sheet 1" provides the selectivity ratios (SR) of lag-phase model 2,

5 and 6 (see Table 3), and their sums; ‘sheet 2’ provides the ranking results
of lag-phase models based on the sum SR; ‘sheet 3’ provides the selected
potential inhibitory compounds and to-be-tested compounds based on the
ranking results.

Additional file 5: Glu CR and EtOH PR modeling results; Description
of data: 'sheet 1-3' contain results of Glu CR models, and ‘sheet 4-6
contain results of EtOH PR models. ‘sheet 1 and 4’ provide 1) the
selectivity ratios (SR) of PLS-2CV models of t3, t4 and t5, and their sums,
2) regression coefficients (reg’) of nPLS-2CV model of t2-t5; ‘sheet 2 and
5" provide the ranking results based on sum SR and req’; ‘sheet 3 and €’
provide the selected potential inhibitory compounds based on the
ranking results; ‘sheet 7' combines the results in sheet 3 and 6, provides
to-be-tested compounds.
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