154 research outputs found

    Phase diagram of the spin-1/2 J1J_1-J2J_2-J3J_3 Heisenberg model on the square lattice

    Full text link
    We presents the results of an extensive numerical study of the phase diagram of the spin-1/2, \protect{J1J_1-J2J_2-J3J_3} Heisenberg model on a square lattice, for both ferromagnetic and antiferromagnetic nearest-neighbor interactions J1J_1, using exact diagonalization with periodic and twisted boundary conditions. Comparison is made with published spin wave calculations. We show that quantum fluctuations play a very important role, changing both the extent and the wave vector of classical spiral phases, and leading to new quantum phases where the classical spiral states have a high degeneracy. These include a new phase with small or vanishing spin-stiffness, in addition to known valence-bond-solid and bond-nematic phases.Comment: submitted for the International Conference on Magnetism to be held 26-31 July 2009 in Karlsruh

    Quantum disorder due to singlet formation: The Plaquette lattice

    Full text link
    I study the order/disorder transition due to singlet formation in a quantum spin system by means of exact diagonalization. The systems is build by spin 1/2 on a two-dimensional square lattice with two different kinds of antiferromagnetic Heisenberg interactions. The interaction J_p connects 4 nearest neighbor spins on a plaquette. The interaction J_n connects the plaquettes with each other. If J_p=J_n the systems reduces to the simple square lattice case. If one of the interactions becomes sufficiently larger then the other the purely quantum effect of singlet formation drives the system into a disordered phase with only short range correlations in the plaquettes and a spin gap. I study the transition point by evaluating the spin gap and spin-spin correlations. I compare the results with previously calculated data from a non-linear sigma model approach, spin wave theory and series expansion calculations. I confirm a critical value of J_n \approx 0.6 for the quantum phase transition point.Comment: 5 pages (Revtex), 7 figure

    Two Step Restoration of SU(2) Symmetry in a Frustrated Ring-Exchange Magnet

    Full text link
    We demonstrate the existence of a spin-nematic, moment-free phase in a quantum four-spin ring exchange model on the square lattice. This unusual quantum state is created by the interplay of frustration and quantum fluctuations which lead to a partial restoration of SU(2) symmetry when going from a four-sublattice orthogonal biaxial Neel order to this exotic uniaxial magnet. A further increase of frustration drives a transition to a fully gapped SU(2) symmetric valence bond crystal.Comment: 4 pages, 5 figure

    Octupolar order in the multiple spin exchange model on a triangular lattice

    Full text link
    We show how a gapless spin liquid with hidden octupolar order arises in an applied magnetic field, in a model applicable to thin films of 3He with competing ferromagnetic and antiferromagnetic (cyclic) exchange interactions. Evidence is also presented for nematic -- i.e., quadrupolar -- correlations bordering on ferromagnetism in the absence of a magnetic field.Comment: 4 pages, 5 figure

    Quantum Kagome antiferromagnet ZnCu3(OH)6Cl2

    Full text link
    The frustration of antiferromagnetic interactions on the loosely connected kagome lattice associated to the enhancement of quantum fluctuations for S=1/2 spins was acknowledged long ago as a keypoint to stabilize novel ground states of magnetic matter. Only very recently, the model compound Herbersmithite, ZnCu3(OH)6Cl2, a structurally perfect kagome antiferromagnet, could be synthesized and enables a close comparison to theories. We review and classify various experimental results obtained over the past years and underline some of the pending issues.Comment: 23 pages, 16 figures, invited paper in J. Phys. Soc. Jpn, special topics issue on "Novel States of Matter Induced by Frustration", to be published in Jan. 201

    The incarnation of the Nersesyan-Tsvelik model in (NO)[Cu(NO3)3]

    Full text link
    The topology of the magnetic interactions of the copper spins in the nitrosonium nitratocuprate (NO)[Cu(NO3)3] suggests that it could be a realization of the Nersesyan-Tsvelik model, whose ground state was argued to be either a resonating valence bond (RVB) state or a valence bond crystal (VBC). The measurement of thermodynamic and resonant properties reveals a behavior inherent to low dimensional spin S = 1/2 systems and provides indeed no evidence for the formation of long-range magnetic order down to 1.8 K.Comment: 12 pages, 6 figure

    Valence-bond crystals in the kagome spin-1/2 Heisenberg antiferromagnet: a symmetry classification and projected wave function study

    Full text link
    In this paper, we do a complete classification of valence-bond crystals (VBCs) on the kagome lattice based on general arguments of symmetry only and thus identify many new VBCs for different unit cell sizes. For the spin-1/2 Heisenberg antiferromagnet, we study the relative energetics of competing gapless spin liquids (SLs) and VBC phases within the class of Gutzwiller-projected fermionic wave functions using variational Monte Carlo techniques, hence implementing exactly the constraint of one fermion per site. By using a state-of-the-art optimization method, we conclusively show that the U(1) Dirac SL is remarkably stable towards dimerizing into all 6-, 12- and 36-site unit cell VBCs. This stability is also preserved on addition of a next-nearest-neighbor super-exchange coupling of both antiferromagnetic and ferromagnetic (FM) type. However, we find that a 36-site unit cell VBC is stabilized on addition of a very small next-nearest-neighbor FM super-exchange coupling, i.e. |J2|~0.045, and this VBC is the same in terms of space-group symmetry as that obtained in an effective quantum dimer model study. It breaks reflection symmetry, has a nontrivial flux pattern and is a strong dimerization of the uniform RVB SL.Comment: 16 pages, 25 figures. Invited paper for Focus issue on "Quantum Spin Liquids" of the New Journal of Physic

    Spin-1/2 frustrated antiferromagnet on a spatially anisotopic square lattice: contribution of exact diagonalizations

    Full text link
    The phase diagram of a spin-1/2 JJJ2J-J'-J_2 model is investigated by means of exact diagonalizations on finite samples. This model is a generalization of the J1J2J_1-J_2 model on the square lattice with two different nearest-neighbor couplings J,JJ,J' and may be also viewed as an array of coupled Heisenberg chains. The results suggest that the resonnating valence bond state predicted by Nersesyan and Tsvelik [Phys. Rev. B {\bf 67}, 024422 (2003)] for J2=0.5JJJ_2=0.5J' \ll J is realized and extends beyond the limit of small interchain coupling along a curve nearly coincident with the line where the energy per spin is maximum. This line is likely bordered on both side by a columnar dimer long range order. This columnar order could extends for JJJ'\to J which correspond to the J1J2J_1-J_2 model.Comment: 14 pages, 21 figures, final versio

    Numerical-Diagonalization Study of Spin Gap Issue of the Kagome Lattice Heisenberg Antiferromagnet

    Full text link
    We study the system size dependence of the singlet-triplet excitation gap in the S=1/2S=1/2 kagome-lattice Heisenberg antiferromagnet by numerical diagonalization. We successfully obtain a new result of a cluster of 42 sites. The two sequences of gaps of systems with even-number sites and that with odd-number sites are separately analyzed. Careful examination clarifies that there is no contradiction when we consider the system to be gapless.Comment: 5 pages, 3 figures, 1 table, received by J. Phys. Soc. Jpn. on 20 Jan 2011, to be published in this journa

    The quantum Heisenberg antiferromagnet on the Sierpinski Gasket: An exact diagonalization study

    Full text link
    We present an exact diagonalization study of the quantum Heisenberg antiferromagnet on the fractal Sierpinski gasket for spin quantum numbers s=1/2,s=1 and s=3/2. Since the fractal dimension of the Sierpinski gasket is between one and two we compare the results with corresponding data of one- and two-dimensional systems. By analyzing the ground-state energy, the low-lying spectrum, the spin-spin correlation and the low-temperature thermodynamics we find arguments, that the Heisenberg antiferromagnet on the Sierpinski gasket is probably disordered not only in the extreme quantum case s=1/2 but also for s=1 and s=3/2. Moreover, in contrast to the one-dimensional chain we do not find a distinct behavior between the half-integer and integer-spin Heisenberg models on the Sierpinski gasket. We conclude that magnetic disorder may appear due to the interplay of frustration and strong quantum fluctuations in this spin system with spatial dimension between one and two.Comment: 12 pages (LaTeX), 7 figures, 3 tables, to appear in Physica
    corecore