4,918 research outputs found

    Poisson Lie Group Symmetries for the Isotropic Rotator

    Full text link
    We find a new Hamiltonian formulation of the classical isotropic rotator where left and right SU(2)SU(2) transformations are not canonical symmetries but rather Poisson Lie group symmetries. The system corresponds to the classical analog of a quantum mechanical rotator which possesses quantum group symmetries. We also examine systems of two classical interacting rotators having Poisson Lie group symmetries.Comment: 22pp , Latex fil

    Alternative Structures and Bihamiltonian Systems

    Full text link
    In the study of bi-Hamiltonian systems (both classical and quantum) one starts with a given dynamics and looks for all alternative Hamiltonian descriptions it admits.In this paper we start with two compatible Hermitian structures (the quantum analog of two compatible classical Poisson brackets) and look for all the dynamical systems which turn out to be bi-Hamiltonian with respect to them.Comment: 18 page

    Quantum Bi-Hamiltonian systems, alternative Hermitian structures and Bi-Unitary transformations

    Get PDF
    We discuss the dynamical quantum systems which turn out to be bi-unitary with respect to the same alternative Hermitian structures in a infinite-dimensional complex Hilbert space. We give a necessary and sufficient condition so that the Hermitian structures are in generic position. Finally the transformations of the bi-unitary group are explicitly obtained.Comment: Note di Matematica vol 23, 173 (2004

    Alternative Algebraic Structures from Bi-Hamiltonian Quantum Systems

    Full text link
    We discuss the alternative algebraic structures on the manifold of quantum states arising from alternative Hermitian structures associated with quantum bi-Hamiltonian systems. We also consider the consequences at the level of the Heisenberg picture in terms of deformations of the associative product on the space of observables.Comment: Accepted for publication in Int. J. Geom. Meth. Mod. Phy

    Quantum Systems and Alternative Unitary Descriptions

    Full text link
    Motivated by the existence of bi-Hamiltonian classical systems and the correspondence principle, in this paper we analyze the problem of finding Hermitian scalar products which turn a given flow on a Hilbert space into a unitary one. We show how different invariant Hermitian scalar products give rise to different descriptions of a quantum system in the Ehrenfest and Heisenberg picture.Comment: 18 page

    The quantum-to-classical transition: contraction of associative products

    Full text link
    The quantum-to-classical transition is considered from the point of view of contractions of associative algebras. Various methods and ideas to deal with contractions of associative algebras are discussed that account for a large family of examples. As an instance of them, the commutative algebra of functions in phase space, corresponding to classical physical observables, is obtained as a contraction of the Moyal star-product which characterizes the quantum case. Contractions of associative algebras associated to Lie algebras are discussed, in particular the Weyl-Heisenberg and SU(2)SU(2) groups are considered.Comment: 21 pages, 1 figur

    Groupoids and the tomographic picture of quantum mechanics

    Full text link
    The existing relation between the tomographic description of quantum states and the convolution algebra of certain discrete groupoids represented on Hilbert spaces will be discussed. The realizations of groupoid algebras based on qudit, photon-number (Fock) states and symplectic tomography quantizers and dequantizers will be constructed. Conditions for identifying the convolution product of groupoid functions and the star--product arising from a quantization--dequantization scheme will be given. A tomographic approach to construct quasi--distributions out of suitable immersions of groupoids into Hilbert spaces will be formulated and, finally, intertwining kernels for such generalized symplectic tomograms will be evaluated explicitly

    Adaptive channel selection for DOA estimation in MIMO radar

    Full text link
    We present adaptive strategies for antenna selection for Direction of Arrival (DoA) estimation of a far-field source using TDM MIMO radar with linear arrays. Our treatment is formulated within a general adaptive sensing framework that uses one-step ahead predictions of the Bayesian MSE using a parametric family of Weiss-Weinstein bounds that depend on previous measurements. We compare in simulations our strategy with adaptive policies that optimize the Bobrovsky- Zaka{\i} bound and the Expected Cram\'er-Rao bound, and show the performance for different levels of measurement noise.Comment: Submitted to the 25th European Signal Processing Conference (EUSIPCO), 201

    A pedagogical presentation of a CC^\star-algebraic approach to quantum tomography

    Full text link
    It is now well established that quantum tomography provides an alternative picture of quantum mechanics. It is common to introduce tomographic concepts starting with the Schrodinger-Dirac picture of quantum mechanics on Hilbert spaces. In this picture states are a primary concept and observables are derived from them. On the other hand, the Heisenberg picture,which has evolved in the CC^\star-algebraic approach to quantum mechanics, starts with the algebra of observables and introduce states as a derived concept. The equivalence between these two pictures amounts essentially, to the Gelfand-Naimark-Segal construction. In this construction, the abstract C% C^\star-algebra is realized as an algebra of operators acting on a constructed Hilbert space. The representation one defines may be reducible or irreducible, but in either case it allows to identify an unitary group associated with the CC^\star-algebra by means of its invertible elements. In this picture both states and observables are appropriate functions on the group, it follows that also quantum tomograms are strictly related with appropriate functions (positive-type)on the group. In this paper we present, by means of very simple examples, the tomographic description emerging from the set of ideas connected with the CC^\star-algebra picture of quantum mechanics. In particular, the tomographic probability distributions are introduced for finite and compact groups and an autonomous criterion to recognize a given probability distribution as a tomogram of quantum state is formulated
    corecore