1,646 research outputs found

    Gas Dynamics in the Barred Seyfert Galaxy NGC4151 - II. High Resolution HI Study

    Full text link
    We present sensitive, high angular resolution (6" x 5") 21-cm observations of the neutral hydrogen in the nearby barred Seyfert galaxy, NGC4151. These HI observations, obtained using the VLA in B-configuration, are the highest resolution to date of this galaxy, and reveal hitherto unprecedented detail in the distribution and kinematics of the HI on sub-kiloparsec scales. A complete analysis and discussion of the HI data are presented and the global properties of the galaxy are related to the bar dynamics presented in Paper I.Comment: 13 pages including 9 figures and 3 tables; accepted for publication in MNRA

    MERLIN imaging of the maser flare in Markarian 348

    Get PDF
    MERLIN images of Mrk 348 at 22 GHz show water maser emission at 0.02 - 0.11 Jy, within approximately 0.8 pc of the nucleus. This is the first direct confirmation that molecular material exists close to the Seyfert 2 nucleus. Mrk 348 was observed in 2000 May one month after Falcke et al. (2000) first identified the maser in single-dish spectra. The peak maser flux density has increased about threefold. The masing region is < 0.6 pc in radius. The flux density of radio continuum emission from the core has been rising for about 2 years. The maser-core separation is barely resolved but at the 3 sigma significance level they are not coincident along the line of sight. The masers lie in the direction of the northern radio lobes and probably emanate from material shocked by a jet with velocity close to c. The correlation between the radio continuum increase and maser flare is explained as arising from high level nuclear activity through a common excitation mechanism although direct maser amplification of the core by masers tracing a Keplerian disc is not completely ruled out.Comment: Accepted by MNRAS Letters, 5 pages, 3 figures, corrections in text and figur

    Overexpression of the RieskeFeS protein increasese electron transport rates and biomass yield

    Get PDF
    In this study, we generated transgenic Arabidopsis (Arabidopsis thaliana) plants overexpressing the Rieske FeS protein (PetC), a component of the cytochrome b6f (cyt b6f) complex. Increasing the levels of this protein resulted in concomitant increases in the levels of cyt f (PetA) and cyt b6 (PetB), core proteins of the cyt b6f complex. Interestingly, an increase in the levels of proteins in both the photosystem I (PSI) and PSII complexes also was seen in the Rieske FeS overexpression plants. Although the mechanisms leading to these changes remain to be identified, the transgenic plants presented here provide novel tools to explore this. Importantly, overexpression of the Rieske FeS protein resulted in substantial and significant impacts on the quantum efficiency of PSI and PSII,electron transport, biomass, and seed yield in Arabidopsis plants. These results demonstrate the potential for manipulating electron transport processes to increase crop productivity

    Extended Emission Line Gas in Radio Galaxies - PKS0349-27

    Get PDF
    PKS0349-27 is a classical FRII radio galaxy with an AGN host which has a spectacular, spiral-like structure in its extended emission line gas (EELG). We have measured the velocity field in this gas and find that it splits into 2 cloud groups separated by radial velocities which at some points approach 400 km/s Measurements of the diagnostic emission line ratios [OIII]5007/H-beta, [SII]6716+6731/H-alpha, and [NII]6583/H-alpha in these clouds show no evidence for the type of HII region emission associated with starburst activity in either velocity system. The measured emission line ratios are similar to those found in the nuclei of narrow-line radio galaxies, but the extended ionization/excitation cannot be produced by continuum emission from the active nucleus alone. We present arguments which suggest that the velocity disturbances seen in the EELG are most likely the result of a galaxy-galaxy collision or merger but cannot completely rule out the possibility that the gas has been disrupted by the passage of a radio jet.Comment: 12 pages, 3 fig pages, to appear in the Astrophys.

    Simulation study of magnetic holes at the Earth's collisionless bow shock

    Get PDF
    Recent observations by the Cluster and Double Star spacecraft at the Earth's bow shock have revealed localized magnetic field and density holes in the solar wind plasma. These structures are characterized by a local depletion of the magnetic field and the plasma density, and by a strong increase of the plasma temperature inside the magnetic and density cavities. Our objective here is to report results of a hybrid-Vlasov simulations of ion-Larmor-radius sized plasma density cavities with parameters that are representative of the high-beta solar wind plasma at the Earth's bow shock. We observe the asymmetric self-steepening and shock-formation of the cavity, and a strong localized temperature increase (by a factor of 5–7) of the plasma due to reflections and shock surfing of the ions against the collisionless shock. Temperature maxima are correlated with density minima, in agreement with Cluster observations. For oblique incidence of the solar wind, we observe efficient acceleration of ions along the magnetic field lines by the shock drift acceleration process

    Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco

    Get PDF
    Over the next 40 years it has been estimated that a 50% increase in the yield of grain crops such as wheat and rice will be required to meet the food and fuel demands of the increasing world population. Transgenic tobacco plants have been generated with altered combinations of sedoheptulose-1,7-bisphosphatase, fructose-1,6-bisphosphate aldolase, and the cyanobacterial putative-inorganic carbon transporter B, ictB, of which have all been identified as targets to improve photosynthesis based on empirical studies. It is shown here that increasing the levels of the three proteins individually significantly increases the rate of photosynthetic carbon assimilation, leaf area, and biomass yield. Furthermore, the daily integrated measurements of photosynthesis showed that mature plants fixed between 12-19% more CO2 than the equivalent wild-type plants. Further enhancement of photosynthesis and yield was observed when sedoheptulose-1,7-bisphosphatase, fructose-1,6-bisphosphate aldolase, and ictB were over-expressed together in the same plant. These results demonstrate the potential for the manipulation of photosynthesis, using multigene-stacking approaches, to increase crop yields

    Giant Shapiro steps for two-dimensional Josephson-junction arrays with time-dependent Ginzburg-Landau dynamics

    Full text link
    Two-dimensional Josephson junction arrays at zero temperature are investigated numerically within the resistively shunted junction (RSJ) model and the time-dependent Ginzburg-Landau (TDGL) model with global conservation of current implemented through the fluctuating twist boundary condition (FTBC). Fractional giant Shapiro steps are found for {\em both} the RSJ and TDGL cases. This implies that the local current conservation, on which the RSJ model is based, can be relaxed to the TDGL dynamics with only global current conservation, without changing the sequence of Shapiro steps. However, when the maximum widths of the steps are compared for the two models some qualitative differences are found at higher frequencies. The critical current is also calculated and comparisons with earlier results are made. It is found that the FTBC is a more adequate boundary condition than the conventional uniform current injection method because it minimizes the influence of the boundary.Comment: 6 pages including 4 figures in two columns, final versio
    corecore