205 research outputs found

    Experimental demonstration of gridless spectrum and time optical switching

    Get PDF
    An experimental demonstration of gridless spectrum and time switching is presented. We propose and demonstrate a bit-rate and modulation-format independent optical cross-connect architecture, based on gridless spectrum selective switch, 20-ms 3D-MEMS and 10-ns PLZT optical switches, that supports arbitrary spectrum allocation and transparent time multiplexing. The architecture is implemented in a four-node field-fiber-linked testbed to transport continuous RZ and NRZ data channels at 12.5, 42.7 and 170.8 Gb/s, and selectively groom sub-wavelength RZ channels at 42.7 Gb/s. We also showed that the architecture is dynamic and can be reconfigured to meet the routing requirements of the network traffic. Results show error-free operation with an end-to-end power penalty between 0.8 dB and 5 dB for all continuous and sub-wavelength channels

    A Novel QoS provisioning Scheme for OBS networks

    Get PDF
    This paper presents Classified Cloning, a novel QoS provisioning mechanism for OBS networks carrying real-time applications (such as video on demand, Voice over IP, online gaming and Grid computing). It provides such applications with a minimum loss rate while minimizing end-to-end delay and jitter. ns-2 has been used as the simulation tool, with new OBS modules having been developed for performance evaluation purposes. Ingress node performance has been investigated, as well as the overall performance of the suggested scheme. The results obtained showed that new scheme has superior performance to classical cloning. In particular, QoS provisioning offers a guaranteed burst loss rate, delay and expected value of jitter, unlike existing proposals for QoS implementation in OBS which use the burst offset time to provide such differentiation. Indeed, classical schemes increase both end-to-end delay and jitter. It is shown that the burst loss rate is reduced by 50% reduced over classical cloning

    Gridless optical networking field trial: flexible spectrum switching, defragmentation and transport of 10G/40G/100G/555G over 620-km field fiber

    No full text
    We report the first gridless networking field trial with flexible spectrum switching nodes over 620 km field fibre links. Successful transport, spectrum switching and defragmentation achieved for mixed line signals including 555G and coherent 100G

    40 Gbit/s asynchronous digital optical regenerator

    Get PDF
    We present the first experimental demonstration of an asynchronous digital optical regenerator at 42.67 Gbit/s. The system effectively retimes incoming asynchronous data bursts to a local clock without burst mode clock recovery and converts the signal to a desired wavelength and duty cycle

    Energy efficiency considerations in integrated IT and optical network resilient infrastructures

    Get PDF
    The European Integrated Project GEYSERS - Generalised Architecture for Dynamic Infrastructure Services - is concentrating on infrastructures incorporating integrated optical network and IT resources in support of the Future Internet with special emphasis on cloud computing. More specifically GEYSERS proposes the concept of Virtual Infrastructures over one or more interconnected Physical Infrastructures comprising both network and IT resources. Taking into consideration the energy consumption levels associated with the ICT today and the expansion of the Internet in size and complexity, that incurring increased energy consumption of both IT and network resources, energy efficient infrastructure design becomes critical. To address this need, in the framework of GEYSERS, we propose energy efficient design of infrastructures incorporating integrated optical network and IT resources, supporting resilient end-to-end services. Our modeling results quantify significant energy savings of the proposed solution by jointly optimizing the allocation of both network and IT resources

    Quantum-Aware Software Defined Networks

    Get PDF
    Software Defined Networks (SDN) represent a major paradigm change in communications networks. It provides a level of abstraction and independence from the traditional networking practice that allows for a fast path of innovation and, specifically, opens new opportunities for Quantum Key Distribution (QKD) networks. In this contribution we explore the implications of this paradigm for the deployment of QKD in practice from the point of view of telecommunications? providers, network equipment manufacturers and applied research and development. We propose a generic quantum-aware SDN architecture and two applications, a generic end to end encryption one and other for the network infrastructure itself
    • …
    corecore