563 research outputs found

    The influence of sex, allergic rhinitis, and test system on nasal sensitivity to airborne irritants: a pilot study.

    Get PDF
    "Nasal irritant sensitivity" is an important construct in environmental health science; functional measures, however, lack standardization. We performed duplicate measures of nasal irritant perceptual acuity on 16 subjects (evenly divided by sex and seasonal allergy status) using two different test compounds: carbon dioxide (CO2) (detection) and n-propanol (localization). The a priori hypotheses included a) allergic rhinitics will display lower perceptual thresholds than nonrhinitics; b) females will display lower perceptual thresholds than males; and c) estimates of perceptual acuity using the two test systems will be positively correlated. We obtained CO2 detection thresholds using an ascending concentration series, presenting 3-sec pulses of CO2, paired with air in random order, by nasal cannula. We obtained localization thresholds by simultaneously presenting stimuli (ascending concentrations of n-propanol vapor in air) and blanks (saturated water vapor in air) to opposite nostrils, with laterality randomized. In terms of test-retest reliability, individual replicate measures for CO2 detection thresholds correlated more closely than did the localization thresholds of volatile organic compounds (VOC) (r = 0.65 and r = 0.60, respectively). As an intertest comparison, log-transformed individual mean CO2 and VOC measures were positively correlated with an r of 0.63 (p < 0.01). In univariate analyses, sex predicted both log-transformed CO2 and VOC thresholds (females being more "sensitive"; p < 0.05 and 0.001, respectively). Nasal allergies predicted sensory testing results only in the multivariate analysis, and then only for VOC localization (p < 0.05). The question of population variation in nasal irritant sensitivity (as well as the generalizability of results across test compounds) deserves further attention

    The Role of Solar Wind Hydrogen in Space Weathering: Insights from Laboratory-Irradiated Northwest Africa 12008

    Get PDF
    Micrometeoroid impacts, solar wind plasma interactions, and regolith gardening drive the complicated and nuanced mechanism of space weathering (or optical maturation); a process by which a materials optical properties are changed as a result of chemical and physical alterations at the surface of grains on airless bodies. Reddened slopes, attenuated absorption bands, and an overall reduction in albedo in the visible and near-IR wavelength ranges are primarily the result of native iron nanoparticle (npFe0) production within glassy rims that form from sputtering and vaporization. The sizes and abundance of these particles provide information about the relative surface exposure age of a particular grain. In addition, many studies have indicated that composition greatly affects the rate at which optical maturation occurs. Despite our understanding of how npFe0 affects optical signatures, the relative roles of micrometeoroid bombardment and solar wind interactions remains undetermined. To simulate the early effects of weathering by the solar wind and to determine thresholds for optical change with respect to a given mineral phase, we irradiated a fine-grained lunar basalt with 1 keV H+ to a fluence of 6.4 x 1016 H+ per sq.cm. Surface alterations within four phases have been evaluated using transmission electron microscopy (TEM). We found that for a given fluence of H+, the extent of damage acquired by each grain was dependent on its composition. No npFe(0) was produced in any of the phases evaluated in this study. These results are consistent with many previous studies conducted using ions of similar energy, but they also provide valuable information about the onset of space weathering and the role of the solar wind during the early stages of optical maturation

    Considering the role of cognitive control in expert performance

    Get PDF
    © 2014, Springer Science+Business Media Dordrecht. Dreyfus and Dreyfus’ (1986) influential phenomenological analysis of skill acquisition proposes that expert performance is guided by non-cognitive responses which are fast, effortless and apparently intuitive in nature. Although this model has been criticised (e.g., by Breivik Journal of Philosophy of Sport, 34, 116–134 2007, Journal of the Philosophy of Sport, 40, 85–106 2013; Eriksen 2010; Montero Inquiry:An interdisciplinary Journal of Philosophy, 53, 105–122 2010; Montero and Evans 2011) for over-emphasising the role that intuition plays in facilitating skilled performance, it does recognise that on occasions (e.g., when performance goes awry for some reason) a form of ‘detached deliberative rationality’ may be used by experts to improve their performance. However, Dreyfus and Dreyfus (1986) see no role for calculative problem solving or deliberation (i.e., drawing on rules or mental representations) when performance is going well. In the current paper, we draw on empirical evidence, insights from athletes, and phenomenological description to argue that ‘continuous improvement’ (i.e., the phenomenon whereby certain skilled performers appear to be capable of increasing their proficiency even though they are already experts; Toner and Moran 2014) among experts is mediated by cognitive (or executive) control in three distinct sporting situations (i.e., in training, during pre-performance routines, and while engaged in on-line skill execution). We conclude by arguing that Sutton et al. Journal of the British Society for Phenomenology, 42, 78–103 (2011) ‘applying intelligence to the reflexes’ (AIR) approach may help to elucidate the process by which expert performers achieve continuous improvement through analytical/mindful behaviour during training and competition

    A network that performs brute-force conversion of a temporal sequence to a spatial pattern: relevance to odor recognition

    Get PDF
    A classic problem in neuroscience is how temporal sequences (TSs) can be recognized. This problem is exemplified in the olfactory system, where an odor is defined by the TS of olfactory bulb (OB) output that occurs during a sniff. This sequence is discrete because the output is subdivided by gamma frequency oscillations. Here we propose a new class of "brute-force" solutions to recognition of discrete sequences. We demonstrate a network architecture in which there are a small number of modules, each of which provides a persistent snapshot of what occurs in a different gamma cycle. The collection of these snapshots forms a spatial pattern (SP) that can be recognized by standard attractor-based network mechanisms. We will discuss the implications of this strategy for recognizing odor-specific sequences generated by the OB

    Corporal diagnostic work and diagnostic spaces: Clinicians' use of space and bodies during diagnosis

    Get PDF
    © 2015 The Authors. Sociology of Health & Illness © 2015 Foundation for the Sociology of Health & Illness/John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.An emerging body of literature in sociology has demonstrated that diagnosis is a useful focal point for understanding the social dimensions of health and illness. This article contributes to this work by drawing attention to the relationship between diagnostic spaces and the way in which clinicians use their own bodies during the diagnostic process. As a case study, we draw upon fieldwork conducted with a multidisciplinary clinical team providing deep brain stimulation (DBS) to treat children with a movement disorder called dystonia. Interviews were conducted with team members and diagnostic examinations were observed. We illustrate that clinicians use communicative body work and verbal communication to transform a material terrain into diagnostic space, and we illustrate how this diagnostic space configures forms of embodied 'sensing-and-acting' within. We argue that a 'diagnosis' can be conceptualised as emerging from an interaction in which space, the clinician-body, and the patient-body (or body-part) mutually configure one another. By conceptualising diagnosis in this way, this article draws attention to the corporal bases of diagnostic power and counters Cartesian-like accounts of clinical work in which the patient-body is objectified by a disembodied medical discourse.The Wellcome Trust (Wellcome Trust Biomedical Strategic Award 086034

    Screening by symmetry of long-range hydrodynamic interactions of polymers confined in sheets

    Full text link
    Hydrodynamic forces may significantly affect the motion of polymers. In sheet-like cavities, such as the cell's cytoplasm and microfluidic channels, the hydrodynamic forces are long-range. It is therefore expected that that hydrodynamic interactions will dominate the motion of polymers in sheets and will be manifested by Zimm-like scaling. Quite the opposite, we note here that although the hydrodynamic forces are long-range their overall effect on the motion of polymers vanishes due to the symmetry of the two-dimensional flow. As a result, the predicted scaling of experimental observables such as the diffusion coefficient or the rotational diffusion time is Rouse-like, in accord with recent experiments. The effective screening validates the use of the non-interacting blobs picture for polymers confined in a sheet.Comment: http://www.weizmann.ac.il/complex/tlusty/papers/Macromolecules2006.pdf http://pubs.acs.org/doi/abs/10.1021/ma060251

    An interdisciplinary examination of attentional focus strategies used during running gait retraining

    Get PDF
    The aim was to investigate the biomechanical, physiological and perceptual responses to different motor learning strategies derived to elicit a flatter foot contact. Twenty‐eight, rearfoot‐striking recreational runners (age 24.9±2.8 years; body mass 78.8±13.6 kg; height 1.79±0.09 m) were matched by age, mass and height and assigned to one verbal cue group: internal focus of attention (IF), external focus of attention (EF) and a clinically derived condition (CLIN) incorporating an IF followed by an EF statement. Participants completed two treadmill runs at 10 km.h‐1 for six minutes each: normal running (control) followed by the experimental condition (IF, EF or CLIN). Lower limb kinematics, oxygen consumption (V̇02 )and central and peripheral ratings of perceived exertion (RPE) were recorded for each run. Compared to the control condition, foot angle was reduced in the IF (difference=5.86°, d=2.58) and CLIN (difference=3.00°, d=1.31) conditions, but unchanged in the EF (difference=0.33°, d=0.14) condition, whilst greater knee flexion at initial contact in the EF and CLIN conditions was observed (difference=‐5.19°, d=1.97; difference=‐3.66°, d=1.39, respectively). A higher V̇02 was observed in the CLIN condition (difference=‐4.56 ml.kg‐1.min‐1, d=2.29), but unchanged in the IF (difference = ‐1.87 ml.kg‐1.min‐1, d=0.94) and EF conditions (difference=‐0.37 ml.kg‐1.min‐1, d=0.19). All experimental conditions increased central and peripheral RPE (difference=‐1.08, d=0.54 and difference=‐2.39, d=1.33 respectively). Providing gait retraining instructions using an internally directed focus of attention was the most effective way to target specific changes in running kinematics, with no detrimental effect on physiological responses. Yet, perceptual effort responses increased regardless of the type of cue provided
    • 

    corecore