113 research outputs found

    TGFβ induces a SAMHD1-independent post-entry restriction to HIV-1 infection of human epithelial Langerhans cells

    Get PDF
    Sterile alpha motif (SAM) and histidine-aspartic (HD) domains protein 1 (SAMHD1) was previously identified as a critical post-entry restriction factor to HIV-1 infection in myeloid dendritic cells. Here we show that SAMHD1 is also expressed in epidermis-isolated Langerhans cells (LC), but degradation of SAMHD1 does not rescue HIV-1 or vesicular stomatitis virus G-pseudotyped lentivectors infection in LC. Strikingly, using Langerhans cells model systems (mutz-3-derived LC, monocyte-derived LC [MDLC], and freshly isolated epidermal LC), we characterize previously unreported post-entry restriction activity to HIV-1 in these cells, which acts at HIV-1 reverse transcription, but remains independent of restriction factors SAMHD1 and myxovirus resistance 2 (MX2). We demonstrate that transforming growth factor-β signaling confers this potent HIV-1 restriction in MDLC during their differentiation and blocking of mothers against decapentaplegic homolog 2 (SMAD2) signaling in MDLC restores cells’ infectivity. Interestingly, maturation of MDLC with a toll-like receptor 2 agonist or transforming growth factor-α significantly increases cells’ susceptibility to HIV-1 infection, which may explain why HIV-1 acquisition is increased during coinfection with sexually transmitted infections. In conclusion, we report a SAMHD1-independent post-entry restriction in MDLC and LC isolated from epidermis, which inhibits HIV-1 replication. A better understanding of HIV-1 restriction and propagation from LC to CD4+ T cells may help in the development of new microbicides or vaccines to curb HIV-1 infection at its earliest stages during mucosal transmission

    Effect of the probiotic Lactobacilli reuteri (Prodentis) in the management of periodontal disease: a preliminary randomized clinical trial

    Get PDF
    Objectives: The aim of this study was to evaluate the effects of Lactobacilli reuteri (Prodentis) alone and in combination with scaling and root planing (SRP) in a double blind, randomized, placebo-controlled clinical trial of volunteers with chronic periodontitis. Methods: Thirty, otherwise systemically healthy, chronic periodontitis patients (19 males and 11 females, aged between 34 and 50 years) were included. The study period was 42 days. ‘Split-mouth’ design was used for the SRP, which was performed on day 0; two quadrants (either right or left) were treated with SRP whereas the remaining two quadrants were left untreated. The participants received a toothbrush, toothpaste, and brushing instructions. L. reuteri Prodentis lozenges (1×108 CFU DSM17938 + 1×108 CFU ATCC PTA 5289) or the corresponding placebo lozenges were taken twice daily from day 21 to day 42. Statistical analysis was done for comparisons of clinical parameters (Plaque Index (PI), Gingival Index (GI), Gingival Bleeding Index (GBI), probing pocket depth (PPD), clinical attachment level (CAL)) and microbiological levels of the pathogens Aggregibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), and Prevotella intermedia (Pi). All p-values less than 0.05 were considered significant. Assessments were made on day 0 before SRP treatment, on day 21 before administration of the lozenges, and on day 42. Results: At day 42, the PI, GI, and GBI were significantly reduced by all treatment modalities. When ranked, the amount of PI, GI and GBI reduction by the different treatments was SRP + Prodentis > Prodentis > SRP + placebo > placebo; all differences were statistically significant. For PPD and CAL, the best result was obtained with the SRP + Prodentis treatment. PPD was reduced from 5.08±0.75 to 3.78±0.61 mm (p<0.001) and CAL from 3.93±0.93 to 2.85±0.74 mm (p<0.001). Prodentis, either alone or following SRP, reduced Aa, Pi, and Pg by 1 log10 unit (p<0.01). The SRP + placebo combination did not significantly affect the levels of the pathogens. Conclusion: The present randomized controlled trial confirms the plaque inhibition, anti-inflammatory, and antimicrobial effects of L. reuteri Prodentis. L. reuteri Prodentis probiotic can be recommended during non-surgical therapy and the maintenance phase of periodontal treatment. Considering the beneficial effects of probiotics, this therapy could serve as a useful adjunct or alternative to periodontal treatment when SRP might be contraindicated. Further studies are required in this direction

    Emerging therapies for right ventricular dysfunction and failure

    Get PDF
    Therapeutic options for right ventricular (RV) dysfunction and failure are strongly limited. Right heart failure (RHF) has been mostly addressed in the context of pulmonary arterial hypertension (PAH), where it is not possible to discern pulmonary vascular- and RV-directed effects of therapeutic approaches. In part, opposing pathomechanisms in RV and pulmonary vasculature, i.e., regarding apoptosis, angiogenesis and proliferation, complicate addressing RHF in PAH. Therapy effective for left heart failure is not applicable to RHF, e.g., inhibition of adrenoceptor signaling and of the renin-angiotensin system had no or only limited success. A number of experimental studies employing animal models for PAH or RV dysfunction or failure have identified beneficial effects of novel pharmacological agents, with most promising results obtained with modulators of metabolism and reactive oxygen species or inflammation, respectively. In addition, established PAH agents, in particular phosphodiesterase-5 inhibitors and soluble guanylate cyclase stimulators, may directly address RV integrity. Promising results are furthermore derived with microRNA (miRNA) and long non-coding RNA (lncRNA) blocking or mimetic strategies, which can target microvascular rarefaction, inflammation, metabolism or fibrotic and hypertrophic remodeling in the dysfunctional RV. Likewise, pre-clinical data demonstrate that cell-based therapies using stem or progenitor cells have beneficial effects on the RV, mainly by improving the microvascular system, however clinical success will largely depend on delivery routes. A particular option for PAH is targeted denervation of the pulmonary vasculature, given the sympathetic overdrive in PAH patients. Finally, acute and durable mechanical circulatory support are available for the right heart, which however has been tested mostly in RHF with concomitant left heart disease. Here, we aim to review current pharmacological, RNA- and cell-based therapeutic options and their potential to directly target the RV and to review available data for pulmonary artery denervation and mechanical circulatory support

    DC-SIGN promotes Japanese encephalitis virus transmission from dendritic cells to T cells via virological synapses.

    Get PDF
    Skin-resident dendritic cells (DCs) likely encounter incoming viruses in the first place, and their migration to lymph nodes following virus capture may promote viral replication. However, the molecular mechanisms underlying these processes remain unclear. In the present study, we found that compared to cell-free viruses, DC-bound viruses showed enhanced capture of JEV by T cells. Additionally, JEV infection was increased by co-culturing DCs and T cells. Blocking the C-type lectin receptor DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) with neutralizing antibodies or antagonists blocked JEV transmission to T cells. Live-cell imaging revealed that DCs captured and transferred JEV viral particles to T cells via virological synapses formed at DC-T cell junctions. These findings indicate that DC-SIGN plays an important role in JEV transmission from DCs to T cells and provide insight into how JEV exploits the migratory and antigen-presenting capabilities of DCs to gain access to lymph nodes for dissemination and persistence in the host

    Bioactivity, biocompatibility and antimicrobial properties of a chitosan-mineral composite for periodontal tissue regeneration

    Get PDF
    A composite membrane of the polymer, chitosan, and the silver-exchanged mineral phase, tobermorite, was prepared by solvent casting and characterised by scanning electron microscopy and Fourier transform infrared spectroscopy. The in vitro bioactivity, cytocompatibility and antimicrobial activity of the composite were evaluated with respect to its potential application as a guided tissue regeneration (GTR) membrane. The in vitro bioactivity was verified by the formation of hydroxyapatite on the surface of the membrane in simulated body fluid and its cytocompatibility was established using MG63 human osteosarcoma cells. The presence of silver ions conferred significant antimicrobial activity against S. aureus, P. aeruginosa and E. coli. The findings of this investigation have indicated that the chitosansilver-tobermorite composite is a prospective candidate for GTR applications

    DOK3 Negatively Regulates LPS Responses and Endotoxin Tolerance

    Get PDF
    Innate immune activation via Toll-like receptors (TLRs), although critical for host defense against infection, must be regulated to prevent sustained cell activation that can lead to cell death. Cells repeatedly stimulated with lipopolysaccharide (LPS) develop endotoxin tolerance making the cells hypo-responsive to additional TLR stimulation. We show here that DOK3 is a negative regulator of TLR signaling by limiting LPS-induced ERK activation and cytokine responses in macrophages. LPS induces ubiquitin-mediated degradation of DOK3 leading to SOS1 degradation and inhibition of ERK activation. DOK3 mice are hypersensitive to sublethal doses of LPS and have altered cytokine responses in vivo. During endotoxin tolerance, DOK3 expression remains stable, and it negatively regulates the expression of SHIP1, IRAK-M, SOCS1, and SOS1. As such, DOK3-deficient macrophages are more sensitive to LPS-induced tolerance becoming tolerant at lower levels of LPS than wild type cells. Taken together, the absence of DOK3 increases LPS signaling, contributing to LPS-induced tolerance. Thus, DOK3 plays a role in TLR signaling during both naïve and endotoxin-induced tolerant conditions

    Dendritic cells promote the spread of human T-cell leukemia virus type 1 via bidirectional interactions with CD4+ T cells

    Get PDF
    Human T-cell leukemia virus type-1 (HTLV-1) propagates within and between individuals via cell-to-cell transmission, and primary infection typically occurs across juxtaposed mucosal surfaces during breastfeeding and sexual intercourse. It is therefore likely that dendritic cells (DCs) are among the first potential targets for HTLV-1. However, it remains unclear how DCs contribute to virus transmission and dissemination in the early stages of infection. We show that an HTLV-1-infected cell line (MT-2) and naturally-infected CD4+ T-cells transfer p19+ viral particles to the surface of allogeneic DCs via cell-to-cell contacts. Similarly organized cell-to-cell contacts facilitate DC-mediated transfer of HTLV-1 to autologous CD4+ T-cells. These findings shed light on the cellular structures involved in anterograde and retrograde transmission, and suggest a key role for DCs in the natural history and pathogenesis of HTLV-1 infection

    Human T Cell Leukemia Virus Reactivation with Progression of Adult T-Cell Leukemia-Lymphoma

    Get PDF
    Background: Human T-cell leukemia virus-associated adult T-cell leukemia-lymphoma (ATLL) has a very poor prognosis, despite trials of a variety of different treatment regimens. Virus expression has been reported to be limited or absent when ATLL is diagnosed, and this has suggested that secondary genetic or epigenetic changes are important in disease pathogenesis. Methods and Findings: We prospectively investigated combination chemotherapy followed by antiretroviral therapy for this disorder. Nineteen patients were prospectively enrolled between 2002 and 2006 at five medical centers in a phase II clinical trial of infusional chemotherapy with etoposide, doxorubicin, and vincristine, daily prednisone, and bolus cyclophosphamide (EPOCH) given for two to six cycles until maximal clinical response, and followed by antiviral therapy with daily zidovudine, lamivudine, and alpha interferon-2a for up to one year. Seven patients were on study for less than one month due to progressive disease or chemotherapy toxicity. Eleven patients achieved an objective response with median duration of response of thirteen months, and two complete remissions. During chemotherapy induction, viral RN

    Programmed Death-1 and Its Ligand Are Novel Immunotolerant Molecules Expressed on Leukemic B Cells in Chronic Lymphocytic Leukemia

    Get PDF
    Programmed death-1 (PD-1) is an immunoreceptor predominantly expressed on exhausted T cells, which through an interaction with its ligand (PD-L1), controls peripheral tolerance by limiting effector functions of T lymphocytes. qRT-PCR for PD-1, PD-L1 and their splicing forms as well as flow cytometric assessment of surface expression was performed in a cohort of 58 chronic lymphocytic leukemia (CLL) patients. In functional studies, we assessed the influence of the proliferative response of leukemic B-cells induced by IL-4 and CD40L on PD-1 transcripts and expression on the protein level. The median level of PD-1, but not PD-L1, transcripts in CLL patients was higher in comparison to healthy volunteers (HVs, n = 43, p = 0.0057). We confirmed the presence of PD-1 and PD-L1 on the CLL cell surface, and found the expression of PD-1, but not PD-L1, to be higher among CLL patients in comparison to HVs (47.2% vs. 14.8%, p<0.0001). The Kaplan-Meier curves for the time to progression and overall survival in groups with high and low surface expression of PD-1 and PD-L1 revealed no prognostic value in CLL patients. After stimulation with IL-4 and CD40L, protein expression of PD-1 was significantly increased in samples that responded and up-regulated CD38. PD-1, which is aberrantly expressed both at mRNA and cell surface levels in CLL cells might represent a novel immunotolerant molecule involved in the pathomechanism of the disease, and could provide a novel target for future therapies
    corecore