12,905 research outputs found
Fabrication and characterization of Si3N4 ceramics without additives by high pressure hot pressing
High pressure hot-pressing of Si3N4 without additives was performed using various kinds of Si3N4 powder as starting materials, and the relation between densification and alpha-beta phase transformation was studied. The temperature dependences of Vickers microhardness and fracture toughness were also examined. Densification of Si3N4 was divided into three stages, and it was found that densification and phase transformation of Si3N4 under pressure were closely associated. The results of the temperature dependence of Vickers microhardness indicated that the high-temperature hardness was strongly influenced not only by the density and microstructure of sintered body but also by the purity of starting powder. The fracture toughness values of Si3N4 bodies without additives were 3.29-4.39 MN/m to the 3/2 power and independent of temperature up to 1400 C
Slow Radiation-Driven Wind Solutions of A-Type Supergiants
The theory of radiation-driven winds succeeded in describing terminal
velocities and mass loss rates of massive stars. However, for A-type
supergiants the standard m-CAK solution predicts values of mass loss and
terminal velocity higher than the observed values. Based on the existence of a
slow wind solution in fast rotating massive stars, we explore numerically the
parameter space of radiation-driven flows to search for new wind solutions in
slowly rotating stars, that could explain the origin of these discrepancies. We
solve the 1-D hydrodynamical equation of rotating radiation-driven winds at
different stellar latitudes and explore the influence of ionization's changes
throughout the wind in the velocity profile. We have found that for particular
sets of stellar and line-force parameters, a new slow solution exists over the
entire star when the rotational speed is slow or even zero. In the case of slow
rotating A-type supergiant stars the presence of this novel slow solution at
all latitudes leads to mass losses and wind terminal velocities which are in
agreement with the observed values. The theoretical Wind Momentum-Luminosity
Relationship derived with these slow solutions shows very good agreement with
the empirical relationship. In addition, the ratio between the terminal and
escape velocities, which provides a simple way to predict stellar wind energy
and momentum input into the interstellar medium, is also properly traced.Comment: 7 Pages, 3 figures, Astrophysical Journal, Accepte
Death kinetics of Escherichia coli in goat milk and Bacillus licheniformis in cloudberry jam treated by ohmic heating
In recent years, the world’s food industry has focused increasing attention on electrical techniques of
food processing. Ohmic heating is one of these techniques that can be considered as a high temperature
short time and a purely bulk heating method, having potential applications in processes such as
blanching, evaporation and pasteurization in the food industry. However such technology would have
to assure the microbiological safety obtained by the conventional cooking methods. Concerning this,
the influence of heat treatment by ohmic and conventional technology on death kinetic parameters (D
and z values) of Escherichia coli ATCC® 25922 was studied in goat milk. In ohmic treatment lower D
values were obtained (D60ºC = 4.2 min, D63ºC = 1.9 min, D65ºC = 0.86 min) as compared to conventional
treatment (D63ºC = 3.9 min, D65ºC = 3.5, D67ºC = 2.8 min, D75ºC = 1.5 min). The increase of temperature
required for a ten fold decrease in D value was also lower in the ohmic inactivation (z = 8.4 ºC)
comparing with the conventional inactivation (z = 23.1 ºC). The death kinetics for Bacillus
licheniformis ATCC® 14580 spores in cloudberry jam were also studied under both types of heat
inactivation (ohmic and conventional) and similar conclusions were drawn for the D values; lower D
values were also obtained for ohmic treatment (D70ºC = 57.1 min, D75ºC = 25.2 min, D80ºC = 7.2 min) as
compared to conventional treatment (D70ºC = 85.3 min, D75ºC = 51.0, D80ºC = 18.1 min, D85ºC = 6.0 min,
D90ºC = 1.6 min). However, between the z values obtained for those treatments (z ohmic = 11.1 ºC and z
conventional = 11.4 ºC) the differences were not significant. In general the results of present work indicate
that the ohmic heating provides quicker death kinetics. This opens the perspective for shorter, less
aggressive treatments
Electronic structures of CrX (X=S, Te) studied by Cr 2p soft x-ray magnetic circular dichroism
Cr 2p core excited XAS and XMCD spectra of ferromagnetic CrTe
with several concentrations of =0.11-0.33 and ferrimagnetic
CrS have been measured. The observed XMCD lineshapes are found to
very weakly depend on  for CrTe. The experimental results
are analyzed by means of a configuration-interaction cluster model calculation
with consideration of hybridization and electron correlation effects. The
obtained values of the spin magnetic moment by the cluster model analyses are
in agreement with the results of the band structure calculation.The calculated
result shows that the doped holes created by the Cr deficiency exist mainly in
the Te 5porbital of CrTe, whereas the holes are likely to be in Cr
3d state for CrS.Comment: 8 pages, 6 figures, accepted for publication in Physical Review 
Periodicity Manifestations in the Turbulent Regime of Globally Coupled Map Lattice
We revisit the globally coupled map lattice (GCML). We show that in the so
called turbulent regime various periodic cluster attractor states are formed
even though the coupling between the maps are very small relative to the
non-linearity in the element maps.
  Most outstanding is a maximally symmetric three cluster attractor in period
three motion (MSCA) due to the foliation of the period three window of the
element logistic maps. An analytic approach is proposed which explains
successfully the systematics of various periodicity manifestations in the
turbulent regime. The linear stability of the period three cluster attractors
is investigated.Comment: 34 pages, 8 Postscript figures, all in GCML-MSCA.Zi
Time-reversal focusing of an expanding soliton gas in disordered replicas
We investigate the properties of time reversibility of a soliton gas,
originating from a dispersive regularization of a shock wave, as it propagates
in a strongly disordered environment. An original approach combining
information measures and spin glass theory shows that time reversal focusing
occurs for different replicas of the disorder in forward and backward
propagation, provided the disorder varies on a length scale much shorter than
the width of the soliton constituents. The analysis is performed by starting
from a new class of reflectionless potentials, which describe the most general
form of an expanding soliton gas of the defocusing nonlinear Schroedinger
equation.Comment: 7 Pages, 6 Figure
- …
