15 research outputs found

    Digitalization of the construction industry of the Republic of Belarus as a major factor of growth of its competitiveness

    Get PDF
    Приведены направления и перспективы использования цифровых технологий в строительной отрасли, занимающей значимое место в структуре экономики Республики Беларусь на современном этапе развития. Цифровизация в строительной отрасли является драйвером инновационных преобразований, ускоряя внедрение технологических инноваций и сокращая длительность инновационного процесса. Основной акцент сделан на обобщение данных и систематизацию основных направлений применения цифровых технологий в строительной отрасли.The article presents the directions and prospects of using digital technologies in the construction industry, which occupies a significant place in the structure of the economy of the Republic of Belarus at the present stage of development. Digitalization in the construction industry is a driver of innovative transformations, accelerating the introduction of technological innovations and reducing the duration of the innovation process. The main emphasis is placed on the synthesis of data and systematization of the main areas of application of digital technologies in the construction industry

    Unsubstituted phenothiazine as a superior water-insoluble mediator for oxidases

    No full text
    The mediation of oxidases glucose oxidase (GOx), lactate oxidase (LOx) and cholesterol oxidase (ChOx) by a new electron shuttling mediator, unsubstituted phenothiazine (PTZ), was studied. Cyclic voltammetry and rotating-disk electrode measurements in nonaqueous media were used to determine the diffusion characteristics of the mediator and the kinetics of its reaction with GOx, giving a second-order rate constant of 7.6×103–2.1×104 M−1 s−1 for water–acetonitrile solutions containing 5–15% water. These values are in the range reported for commonly used azine-type mediators, indicating that PTZ is able to function as an efficient mediator. PTZ and GOx, LOx and ChOx were successfully co-immobilised in sol–gel membrane on a screen-printed electrode to construct glucose, lactate and cholesterol biosensors, respectively, which were then optimised in terms of stability and sensitivity. The electrocatalytic oxidation responses showed a dependence on substrate concentration ranging from 0.6 to 32 mM for glucose, from 19 to 565 mM for lactate and from 0.015 to 1.0 mM for cholesterol detection. Oxidation of substrates on the surface of electrodes modified with PTZ and enzyme membrane was investigated with double-step chronoamperometry and the results showed that the PTZ displays excellent electrochemical catalytic activities even when immobilised on the surface of the electrode

    Cholesterol Self-Powered Biosensor

    No full text
    Monitoring the cholesterol level is of great importance, especially for people with high risk of developing heart disease. Here we report on reagentless cholesterol detection in human plasma with a novel single-enzyme, membrane-free, self-powered biosensor, in which both cathodic and anodic bioelectrocatalytic reactions are powered by the same substrate. Cholesterol oxidase was immobilized in a sol-gel matrix on both the cathode and the anode. Hydrogen peroxide, a product of the enzymatic conversion of cholesterol, was electrocatalytically reduced, by the use of Prussian blue, at the cathode. In parallel, cholesterol oxidation catalyzed by mediated cholesterol oxidase occurred at the anode. The analytical performance was assessed for both electrode systems separately. The combination of the two electrodes, formed on high surface-area carbon cloth electrodes, resulted in a self-powered biosensor with enhanced sensitivity (26.0 mA M-1 cm(-2)), compared to either of the two individual electrodes, and a dynamic range up to 4.1 mM cholesterol. Reagentless cholesterol detection with both electrochemical systems and with the self-powered biosensor was performed and the results were compared with the standard method of colorimetric cholesterol quantification.Funding Agencies|Swedish research council Formas; research centre Security Link; Swedish Institute</p

    Cholesterol Self-Powered Biosensor

    No full text
    Monitoring the cholesterol level is of great importance, especially for people with high risk of developing heart disease. Here we report on reagentless cholesterol detection in human plasma with a novel single-enzyme, membrane-free, self-powered biosensor, in which both cathodic and anodic bioelectrocatalytic reactions are powered by the same substrate. Cholesterol oxidase was immobilized in a sol–gel matrix on both the cathode and the anode. Hydrogen peroxide, a product of the enzymatic conversion of cholesterol, was electrocatalytically reduced, by the use of Prussian blue, at the cathode. In parallel, cholesterol oxidation catalyzed by mediated cholesterol oxidase occurred at the anode. The analytical performance was assessed for both electrode systems separately. The combination of the two electrodes, formed on high surface-area carbon cloth electrodes, resulted in a self-powered biosensor with enhanced sensitivity (26.0 mA M<sup>–1</sup> cm<sup>–2</sup>), compared to either of the two individual electrodes, and a dynamic range up to 4.1 mM cholesterol. Reagentless cholesterol detection with both electrochemical systems and with the self-powered biosensor was performed and the results were compared with the standard method of colorimetric cholesterol quantification
    corecore