174 research outputs found
Tumor necrosis factor-\u3b1 and interleukin-6 gene polymorphism association with susceptibility to celiac disease in Italian patients
The aim of this research was to study polymorphisms in the genes encoding cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-\u3b1) in patients with celiac disease (CD) antigens DQ2 (DQ2-positive) or DQ8 (DQ8-positive). We compared the results with healthy controls to determine whether any of the polymorphisms have a role in susceptibility to CD. A case-control of 192 patients with CD (96 DQ2-positive and 96 DQ8-positive) and 96 healthy controls from northeast Italy were included in the study. Analysis of single nucleotide polymorphisms (SNPs) was carried out using the polymerase chain reaction-restriction fragment length polymorphism method. Significant differences for the TNF-\u3b1(-308 G>A) polymorphism were observed when we compared the flowing groups: DQ2-positive with controls [odds ratio (OR) = 0.45, P = 0.0002]; DQ8-positive with controls (OR = 3.55, P C) polymorphism and CD (P > 0.05). Our results suggest that TNF-\u3b1(-308 G>A) polymorphism may play a role in susceptibility to CD in Italian patients
Has VZV epidemiology changed in Italy? Results of a seroprevalence study
The aim of the study was to evaluate if and how varicella prevalence has changed in Italy. In particular a seroprevalence study was performed, comparing it to similar surveys conducted in pre-immunization era. During 2013–2014, sera obtained from blood samples taken for diagnostic purposes or routine investigations were collected in collaboration with at least one laboratory/center for each region, following the approval of the Ethics Committee. Data were stratified by sex and age. All samples were processed in a national reference laboratory by an immunoassay with high sensitivity and specificity. Statutory notifications, national hospital discharge database and mortality data related to VZV infection were analyzed as well. A total of 3707 sera were collected and tested. In the studied period both incidence and hospitalization rates decreased and about 5 deaths per year have been registered. The seroprevalence decreased in the first year of life in subjects passively protected by their mother, followed by an increase in the following age classes. The overall antibody prevalence was 84%. The comparison with surveys conducted with the same methodology in 1996–1997 and 2003–2004 showed significant differences in age groups 1–19 y. The study confirms that in Italy VZV infection typically occurs in children. The impact of varicella on Italian population is changing. The comparison between studies performed in different periods shows a significant increase of seropositivity in age class 1–4 years, expression of vaccine interventions already adopted in some regions
Targeted delivery of photosensitizers: efficacy and selectivity issues revealed by multifunctional ORMOSIL nanovectors in cellular systems
PEGylated and non-PEGylated ORMOSIL nanoparticles prepared by microemulsion condensation of vinyltriethoxy-silane (VTES) were investigated in detail for their micro-structure and ability to deliver photoactive agents. With respect to pure silica nanoparticles, organic modification substantially changes the microstructure and the surface properties. This in turn leads to a modulation of both the photophysical properties of embedded photosensitizers and the interaction of the nanoparticles with biological entities such as serum proteins. The flexibility of the synthetic procedure allows the rapid preparation and screening of multifunctional nanosystems for photodynamic therapy (PDT). Selective targeting of model cancer cells was tested by using folate, an integrin specific RGD peptide and anti-EGFR antibodies. Data suggest the interference of the stealth-conferring layer (PEG) with small targeting agents, but not with bulky antibodies. Moreover, we showed that selective photokilling of tumour cells may be limited even in the case of efficient targeting because of intrinsic transport limitations of active cellular uptake mechanisms or suboptimum localization
Isolation and full-length genome characterization of Sarscov-2 from covid-19 cases in northern Italy
N/
Helicobacter pylori-derived neutrophil-activating protein increases the lifespan of monocytes and neutrophils
P>An invariable feature of Helicobacter pylori-infected gastric mucosa is the persistent infiltration of inflammatory cells. The neutrophil-activating protein (HP-NAP) has a pivotal role in triggering and orchestrating the phlogistic process associated with H. pylori infection. Aim of this study was to address whether HP-NAP might further contribute to the inflammation by increasing the lifespan of inflammatory cells. We report that HP-NAP is able to prolong the lifespan of monocytes, in parallel with the induction of the anti-apoptotic proteins A1, Mcl-1, Bcl-2 and Bcl-X(L). This effect does not result from a direct action on the apoptotic machinery, but rather it requires the release of endogenous pro-survival factors, such as interleukin-1 beta, which probably acts in synergy with other unidentified mediators. We also report that HP-NAP promotes the survival of Ficoll-purified neutrophils in a monocyte-dependent fashion: indeed, mononuclear cell depletion of Ficoll-purified neutrophils completely abolished the pro-survival effect by HP-NAP. In conclusion, our data reinforce the notion that HP-NAP has a pivotal role in sustaining a prolonged activation of myeloid cells
Stimulated Brillouin scattering in tellurite-covered silicon nitride waveguides
Stimulated Brillouin scattering (SBS), a coherent nonlinear effect coupling
acoustics and optics, can be used in a wide range of applications such as
Brillouin lasers and tunable narrowband RF filtering. Wide adoption of such
technologies however, would need a balance of strong Brillouin interaction and
low optical loss in a structure compatible with large scale fabrication.
Achieving these characteristics in scalable platforms such as silicon and
silicon nitride remains a challenge. Here, we investigate a scalable Brillouin
platform combining low loss SiN and tellurium oxide (TeO)
exhibiting strong Brillouin response and enhanced acoustic confinement. In this
platform we measure a Brillouin gain coefficient of 8.5~mW,
exhibiting a twenty fold improvement over the largest previously reported
Brillouin gain in a SiN platform. Further, we demonstrate cladding
engineering to control the strength of the Brillouin interaction. We utilized
the Brillouin gain and loss resonances in this waveguide for an RF photonic
filter with more than 15 dB rejection and 250 MHz linewidth. Finally, we
present a pathway by geometric optimization and cladding engineering to a
further enhancement of the gain coefficient to 155~mW, a
potential 400 times increase in the Brillouin gain coefficient
Surface acoustic waves Brillouin photonics on a silicon nitride chip
Seamlessly integrating stimulated Brillouin scattering (SBS) in a low-loss and mature photonic integration platform remains a complicated task. Virtually all current approaches fall short in simultaneously achieving strong SBS, low losses, and technological scalability. In this work we incorporate stong SBS into a standard silicon nitride platform by a simple deposition of a tellurium oxide layer, a commonly used material for acousto-optic modulators. In these heterogeneously integrated waveguides, we harness novel SBS interactions actuated by surface acoustic waves (SAWs) leading to more than two orders of magnitude gain enhancement. Three novel applications are demonstrated in this platform: (i) a silicon nitride Brillouin amplifier with 5 dB net optical gain, (ii) a compact intermodal stimulated Brillouin laser (SBL) capable of high purity radio frequency (RF) signal generation with 7 Hz intrinsic linewidth, and (iii) a widely tunable microwave photonic notch filter with ultra-narrow linewidth of 2.2 MHz enabled by Brillouin induced opacity. These advancements can unlock an array of new RF and optical technologies to be directly integrated in silicon nitride
Reactivation of Herpes Simplex Virus Type 1 (HSV-1) Detected on Bronchoalveolar Lavage Fluid (BALF) Samples in Critically Ill COVID-19 Patients Undergoing Invasive Mechanical Ventilation: Preliminary Results from Two Italian Centers
Reactivation of herpes simplex virus type 1 (HSV-1) has been described in critically ill patients with coronavirus disease 2019 (COVID-19) pneumonia. In the present two-center retrospective experience, we primarily aimed to assess the cumulative risk of HSV-1 reactivation detected on bronchoalveolar fluid (BALF) samples in invasively ventilated COVID-19 patients with worsening respiratory function. The secondary objectives were the identification of predictors for HSV-1 reactivation and the assessment of its possible prognostic impact. Overall, 41 patients met the study inclusion criteria, and 12/41 patients developed HSV-1 reactivation (29%). No independent predictors of HSV-1 reactivation were identified in the present study. No association was found between HSV-1 reactivation and mortality. Eleven out of 12 patients with HSV-1 reactivation received antiviral therapy with intravenous acyclovir. In conclusion, HSV-1 reactivation is frequently detected in intubated patients with COVID-19. An antiviral treatment in COVID-19 patients with HSV-1 reactivation and worsening respiratory function might be considered
Proteomics analysis of serum protein profiling in pancreatic cancer patients by DIGE: up-regulation of mannose-binding lectin 2 and myosin light chain kinase 2
<p>Abstract</p> <p>Background</p> <p>Pancreatic cancer has significant morbidity and mortality worldwide. Good prognosis relies on an early diagnosis. The purpose of this study was to develop techniques for identifying cancer biomarkers in the serum of patients with pancreatic cancer.</p> <p>Methods</p> <p>Serum samples from five individuals with pancreatic cancer and five individuals without cancer were compared. Highly abundant serum proteins were depleted by immuno-affinity column. Differential protein analysis was performed using 2-dimensional differential in-gel electrophoresis (2D-DIGE).</p> <p>Results</p> <p>Among these protein spots, we found that 16 protein spots were differently expressed between the two mixtures; 8 of these were up-regulated and 8 were down-regulated in cancer. Mass spectrometry and database searching allowed the identification of the proteins corresponding to the gel spots. Up-regulation of mannose-binding lectin 2 and myosin light chain kinase 2, which have not previously been implicated in pancreatic cancer, were observed. In an independent series of serum samples from 16 patients with pancreatic cancer and 16 non-cancer-bearing controls, increased levels of mannose-binding lectin 2 and myosin light chain kinase 2 were confirmed by western blot.</p> <p>Conclusions</p> <p>These results suggest that affinity column enrichment and DIGE can be used to identify proteins differentially expressed in serum from pancreatic cancer patients. These two proteins 'mannose-binding lectin 2 and myosin light chain kinase 2' might be potential biomarkers for the diagnosis of the pancreatic cancer.</p
- …
