367 research outputs found

    Probing the Production of Actinides under Different r-process Conditions

    Get PDF
    Several extremely metal-poor stars are known to have an enhanced thorium abundance. These actinide-boost stars have likely inherited material from an r-process that operated under different conditions than the r-process that is reflected in most other metal-poor stars with no actinide enhancement. In this article, we explore the sensitivity of actinide production in r-process calculations to the hydrodynamical conditions as well as the nuclear physics. We find that the initial electron fraction Y e is the most important factor determining the actinide yields and that the abundance ratios between long-lived actinides and lanthanides like europium can vary for different conditions in our calculations. In our setup, conditions with high entropies systematically lead to lower actinide abundances relative to other r-process elements. Furthermore, actinide-enhanced ejecta can also be distinguished from the "regular" composition in other ways, most notably in the second r-process peak abundances.Peer reviewe

    Mining Small Routine Clinical Data: A Population Pharmacokinetic Model and Optimal Sampling Times of Capecitabine and its Metabolites

    Get PDF
    Purpose: The present study was performed to demonstrate that small amounts of routine clinical data allow to generate valuable knowledge. Concretely, the aims of this research were to build a joint population pharmacokinetic model for capecitabine and three of its metabolites (5-DFUR, 5-FU and 5-FUH2) and to determine optimal sampling times for therapeutic drug monitoring. Methods: We used data of 7 treatment cycles of capecitabine in patients with metastatic colorectal cancer. The population pharmacokinetic model was built as a multicompartmental model using NONMEM and was internally validated by visual predictive check. Optimal sampling times were estimated using PFIM 4.0 following D-optimality criterion. Results: The final model was a multicompartmental model which represented the sequential transformations from capecitabine to its metabolites 5-DFUR, 5-FU and 5-FUH2 and was correctly validated. The optimal sampling times were 0.546, 0.892, 1.562, 4.736 and 8 hours after the administration of the drug. For its correct implementation in clinical practice, the values were rounded to 0.5, 1, 1.5, 5 and 8 hours after the administration of the drug. Conclusions: Capecitabine, 5-DFUR, 5-FU and 5-FUH2 can be correctly described by the joint multicompartmental model presented in this work. The aforementioned times are optimal to maximize the information of samples. Useful knowledge can be obtained for clinical practice from small databases

    A one-point increase in the Damage Index for Antiphospholipid Syndrome (DIAPS) predicts mortality in thrombotic antiphospholipid syndrome

    Get PDF
    OBJECTIVES: To determine whether early damage and its kinetics measured by the Damage Index for Antiphospholipid Syndrome (DIAPS) predicts mortality. METHODS: We carried out a single-centre retrospective analysis of thrombotic APS patients (2006 Sydney criteria), using the DIAPS for damage assessment. Early damage was considered to be at six months after disease onset; early damage increase (delta-DIAPS) was deemed to be at least a one-point rise in DIAPS within the first five years of illness. Groups were compared using appropriate statistical tests. Survival was analysed by the Kaplan-Meier method. Cox regression analysis was performed to investigate predictors of mortality. RESULTS: A total of 197 patients (71.1% female; 65.9% primary APS; 72.4% Caucasian) were followed for up to 43 years (median 10). Damage developed in 143 (73.6%) patients. Twenty-three patients (12%) died. Secondary APS (HR 3.07, 95%CI 1.32-7.12, p=0.009), male sex (HR 3.14, 95%CI 1.35-7.33, p=0.008) and age at APS onset ≥40 years (HR 5.34, 95%CI 1.96-14.53, p=0.001) were risk factors for death. Early damage (n=69, 35.0%) was not associated with death (p=0.231). Having a first arterial event was associated with early damage (p<0.001), but not with delta-DIAPS (p=0.539) nor with the risk of death (p=0.151). Delta-DIAPS (n=53/181, 29.3%) predicted mortality (HR 5.40, 95%CI 2.33-12.52, p<0.001), even after adjusting individually for APS category (secondary), sex (male), early damage and age at APS onset (≥40 years) (all p<0.005). CONCLUSIONS: Evolving damage in the first five years of illness, but not early damage, predicted mortality regardless of the nature of the first thrombotic event, sex, APS category and age

    High rates of venous and arterial thrombotic events in patients with POEMS syndrome: results from the UCLH (UK) POEMS Registry

    Get PDF
    Arterial and venous thromboses occur in patients with POEMS (polyneuropathy, organomegaly, endocrinopathy, M-protein level, and skin changes) syndrome at a previously reported rate of 20%. We reviewed the University College London Hospitals (UCLH) POEMS Registry to determine the rate of venous thromboembolism (VTE), arterial events, and risk factors. This registry, established in 1999 and comprising 103 patients at the time of this study, is the largest single-center cohort in Europe. Of the 83 assessable patients, median age at presentation was 52 years (range, 31-84). Twenty-five patients experienced clinically apparent arterial or venous events, and 2 had concurrent arterial and venous thromboses. Eleven patients had VTEs, including deep vein thrombosis (DVT; 3 of 11), pulmonary embolism (4 of 11), and peripherally inserted central catheter–associated DVT, which occurred during autologous stem cell transplantation (3 of 11). Sixteen patients experienced arterial events: stroke (7 of 16), peripheral arterial occlusion (5 of 16), myocardial infarction (3 of 16), and microvascular disease (1 of 16), with no discernible relationship with thrombocytosis or polycythemia. Thirty percent of POEMS patients have arterial and venous thromboses, higher than previously reported. There were more arterial than venous events, and most occurred during active disease, before the start of chemotherapy, indicating the need for a preemptive approach to thromboprophylaxi

    Semi-classical buckling of stiff polymers

    Full text link
    A quantitative theory of the buckling of a worm like chain based on a semi-classical approximation of the partition function is presented. The contribution of thermal fluctuations to the force-extension relation that allows to go beyond the classical Euler buckling is derived in the linear and non-linear regime as well. It is shown that the thermal fluctuations in the nonlinear buckling regime increase the end-to-end distance of the semiflexible rod if it is confined to 2 dimensions as opposed to the 3 dimensional case. Our approach allows a complete physical understanding of buckling in D=2 and in D=3 below and above the Euler transition.Comment: Revtex, 17 pages, 4 figure

    Dynamics of Signaling between Ca2+ Sparks and Ca2+- Activated K+ Channels Studied with a Novel Image-Based Method for Direct Intracellular Measurement of Ryanodine Receptor Ca2+ Current

    Get PDF
    Ca2+ sparks are highly localized cytosolic Ca2+ transients caused by a release of Ca2+ from the sarcoplasmic reticulum via ryanodine receptors (RyRs); they are the elementary events underlying global changes in Ca2+ in skeletal and cardiac muscle. In smooth muscle and some neurons, Ca2+ sparks activate large conductance Ca2+-activated K+ channels (BK channels) in the spark microdomain, causing spontaneous transient outward currents (STOCs) that regulate membrane potential and, hence, voltage-gated channels. Using the fluorescent Ca2+ indicator fluo-3 and a high speed widefield digital imaging system, it was possible to capture the total increase in fluorescence (i.e., the signal mass) during a spark in smooth muscle cells, which is the first time such a direct approach has been used in any system. The signal mass is proportional to the total quantity of Ca2+ released into the cytosol, and its rate of rise is proportional to the Ca2+ current flowing through the RyRs during a spark (ICa(spark)). Thus, Ca2+ currents through RyRs can be monitored inside the cell under physiological conditions. Since the magnitude of ICa(spark) in different sparks varies more than fivefold, Ca2+ sparks appear to be caused by the concerted opening of a number of RyRs. Sparks with the same underlying Ca2+ current cause STOCs, whose amplitudes vary more than threefold, a finding that is best explained by variability in coupling ratio (i.e., the ratio of RyRs to BK channels in the spark microdomain). The time course of STOC decay is approximated by a single exponential that is independent of the magnitude of signal mass and has a time constant close to the value of the mean open time of the BK channels, suggesting that STOC decay reflects BK channel kinetics, rather than the time course of [Ca2+] decline at the membrane. Computer simulations were carried out to determine the spatiotemporal distribution of the Ca2+ concentration resulting from the measured range of ICa(spark). At the onset of a spark, the Ca2+ concentration within 200 nm of the release site reaches a plateau or exceeds the [Ca2+]EC50 for the BK channels rapidly in comparison to the rate of rise of STOCs. These findings suggest a model in which the BK channels lie close to the release site and are exposed to a saturating [Ca2+] with the rise and fall of the STOCs determined by BK channel kinetics. The mechanism of signaling between RyRs and BK channels may provide a model for Ca2+ action on a variety of molecular targets within cellular microdomains
    corecore