19 research outputs found

    ‘None of my ancestors ever discussed this disease before!’ How disease information shapes adaptive capacity of marginalised rural populations in India

    Get PDF
    Smallholder farmer and tribal communities are often characterised as marginalised and highly vulnerable to emerging zoonotic diseases due to their relatively poor access to healthcare, worse-off health outcomes, proximity to sources of disease risks, and their social and livelihood organisation. Yet, access to relevant and timely disease information that could strengthen their adaptive capacity remain challenging and poorly characterised in the empirical literature. This paper addresses this gap by exploring the role of disease information in shaping the adaptive capacity of smallholder farmer and tribal groups to Kyasanur Forest Disease (KFD), a tick-borne viral haemorrhagic fever. We carried out household surveys (n = 229) and in-depth interviews (n = 25) in two affected districts–Shimoga and Wayanad–in the Western Ghats region. Our findings suggest that, despite the generally limited awareness about KFD, access to disease information improved households’ propensity to implement adaptation strategies relative to households that had no access to it. Of the variety of adaptation strategies implemented, vaccination, avoiding forest visits, wearing of protective clothing and footwear, application of dimethyl phthalate (DMP) oil and income diversification were identified by respondents as important adaptive measures during the outbreak seasons. Even so, we identified significant differences between individuals in exposure to disease information and its contribution to substantive adaptive action. Households reported several barriers to implement adaptation strategies including, lack of disease information, low efficacy of existing vaccine, distrust, religio-cultural sentiments, and livelihood concerns. We also found that informal information sharing presented a promising avenue from a health extension perspective albeit with trade-offs with potential distortion of the messages through misinformation and/or reporting bias. Altogether, our findings stress the importance of contextualising disease information and implementing interventions in a participatory way that sufficiently addresses the social determinants of health in order to bolster households’ adaptive capacity to KFD and other neglected endemic zoonoses

    Targeted apoptosis in ovarian cancer cells through mitochondrial dysfunction in response to Sambucus nigra agglutinin

    Get PDF
    Ovarian carcinoma (OC) patients encounter the severe challenge of clinical management owing to lack of screening measures, chemoresistance and finally dearth of non-toxic therapeutics. Cancer cells deploy various defense strategies to sustain the tumor microenvironment, among which deregulated apoptosis remains a versatile promoter of cancer progression. Although recent research has focused on identifying agents capable of inducing apoptosis in cancer cells, yet molecules efficiently breaching their survival advantage are yet to be classified. Here we identify lectin, Sambucus nigra agglutinin (SNA) to exhibit selectivity towards identifying OC by virtue of its specific recognition of α-2, 6-linked sialic acids. Superficial binding of SNA to the OC cells confirm the hyper-sialylated status of the disease. Further, SNA activates the signaling pathways of AKT and ERK1/2, which eventually promotes de-phosphorylation of dynamin-related protein-1 (Drp-1). Upon its translocation to the mitochondrial fission loci Drp-1 mediates the central role of switch in the mitochondrial phenotype to attain fragmented morphology. We confirmed mitochondrial outer membrane permeabilization resulting in ROS generation and cytochrome-c release into the cytosol. SNA response resulted in an allied shift of the bioenergetics profile from Warburg phenotype to elevated mitochondrial oxidative phosphorylation, altogether highlighting the involvement of mitochondrial dysfunction in restraining cancer progression. Inability to replenish the SNA-induced energy crunch of the proliferating cancer cells on the event of perturbed respiratory outcome resulted in cell cycle arrest before G2/M phase. Our findings position SNA at a crucial juncture where it proves to be a promising candidate for impeding progression of OC. Altogether we unveil the novel aspect of identifying natural molecules harboring the inherent capability of targeting mitochondrial structural dynamics, to hold the future for developing non-toxic therapeutics for treating OC

    1-(3,4-Difluorobenzyl)-4-(4-methylphenylsulfonyl)piperazine

    Get PDF
    In the title compound, C18H20F2N2O2S, the central piperazine ring adopts a chair conformation. The dihedral angle between the two benzene rings is 40.20°, whereas those between the piperazine ring (considering the best fit plane through all the non-H atoms) and the sulfonyl-bound benzene and difluorobenzene rings are 74.96 and 86.16°, respectively. In the crystal, molecules are stacked along the a axis through weak C—H...O and C—H...F interactions

    Exploring the potential of newly synthesized 4-methyl-6-morpholino-pyrimidine derivatives as antiproliferative agents

    No full text
    In view of exploring the potential of pyrimidine derivatives as anticancer agents, a series of 4-methyl-6-morpholinopyrimidine derivatives was synthesised and characterised by NMR (H-1 & C-13), SC-XRD and mass spectral analysis. The in vitro anticancer activity of these compounds was investigated using different human cancer cell lines, namely HeLa (cervix), NCI-H460 (lung), MCF-7 (breast), HepG2 (liver) and IMR-32 (brain). Compounds 4c and 5h exhibited potent anticancer activity in a dose-dependent manner as compared to other derivatives, with IC50 values of 5.88 +/- 1.22 and 6.11 +/- 2.12 mu M on HeLa and NCI-H460, cells respectively. The inhibitory effect of 4c and 5h on cancer cell proliferation was shown to be a consequence of reactive oxygen species (ROS) generation and subsequent induction of cellular apoptosis, as evidenced by an increase in hypodiploid (subG1) population, early apoptotic cell population, caspase-3/7 activity, loss of mitochondrial membrane potential and degradation of nuclear DNA. Furthermore, molecular docking studies revealed that 4c and 5h compounds bind to the ATP binding pocket of the mammalian target of rapamycin (mTOR). Based on our results, we conclude that 4-methyl-6-morpholinopyrimidine derivatives prevent cancer cell proliferation by inducing apoptosis and thus have potential to be further explored for anticancer properties
    corecore