1,267 research outputs found

    Condition for gapless color-antitriplet excitations in NJL models

    Full text link
    We present an exact condition for the existence of gapless quasiparticle excitations in NJL models of color superconducting quark matter with a quark-quark interaction in the scalar color-antitriplet channel. The condition can be represented by a rotated ellipse in the plane of mass and chemical potential differences for the paired quark fields.Comment: Accepted for publication in PRC. 5 pages, 4 figures; Corrected typos and added one more term to the series expansion in (19

    Spherically symmetric Einstein-aether perfect fluid models

    Full text link
    We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a well-posed system of first order partial differential equations in two variables. We then introduce normalized variables. The formalism is particularly well-suited for numerical computations and the study of the qualitative properties of the models, which are also solutions of Horava gravity. We study the local stability of the equilibrium points of the resulting dynamical system corresponding to physically realistic inhomogeneous cosmological models and astrophysical objects with values for the parameters which are consistent with current constraints. In particular, we consider dust models in (β−\beta-) normalized variables and derive a reduced (closed) evolution system and we obtain the general evolution equations for the spatially homogeneous Kantowski-Sachs models using appropriate bounded normalized variables. We then analyse these models, with special emphasis on the future asymptotic behaviour for different values of the parameters. Finally, we investigate static models for a mixture of a (necessarily non-tilted) perfect fluid with a barotropic equations of state and a scalar field.Comment: 52 pages, 7 figures. Matches the published version. arXiv admin note: text overlap with arXiv:gr-qc/0603058 by other author

    1-2-3-flavor color superconductivity in compact stars

    Full text link
    We suggest a scenario where the three light quark flavors are sequentially deconfined under increasing pressure in cold asymmetric nuclear matter, e.g., as in neutron stars. The basis for our analysis is a chiral quark matter model of Nambu--Jona-Lasinio (NJL) type with diquark pairing in the spin-1 single flavor (CSL) and spin-0 two/three flavor (2SC/CFL) channels, and a Dirac-Brueckner Hartree-Fock (DBHF) approach in the nuclear matter sector. We find that nucleon dissociation sets in at about the saturation density, n_0, when the down-quark Fermi sea is populated (d-quark dripline) due to the flavor asymmetry imposed by beta-equilibrium and charge neutrality. At about 3n_0 u-quarks appear forming a two-flavor color superconducting (2SC) phase, while the s-quark Fermi sea is populated only at still higher baryon density. The hybrid star sequence has a maximum mass of 2.1 M_sun. Two- and three-flavor quark matter phases are found only in gravitationally unstable hybrid star solutions.Comment: 4 pages, 2 figures, to appear in the proceedings of Quark Matter 2008: 20th International Conference on Ultra-Relativistic Nucleus Nucleus Collisions (QM 2008), Jaipur, India, 4-10 Feb 200

    Tilted two-fluid Bianchi type I models

    Full text link
    In this paper we investigate expanding Bianchi type I models with two tilted fluids with the same linear equation of state, characterized by the equation of state parameter w. Individually the fluids have non-zero energy fluxes w.r.t. the symmetry surfaces, but these cancel each other because of the Codazzi constraint. We prove that when w=0 the model isotropizes to the future. Using numerical simulations and a linear analysis we also find the asymptotic states of models with w>0. We find that future isotropization occurs if and only if w≤1/3w \leq 1/3. The results are compared to similar models investigated previously where the two fluids have different equation of state parameters.Comment: 14 pages, 3 figure

    p3d: a general data-reduction tool for fiber-fed integral-field spectrographs

    Full text link
    The reduction of integral-field spectrograph (IFS) data is demanding work. Many repetitive operations are required in order to convert raw data into, typically a large number of, spectra. This effort can be markedly simplified through the use of a tool or pipeline, which is designed to complete many of the repetitive operations without human interaction. Here we present our semi-automatic data-reduction tool p3d that is designed to be used with fiber-fed IFSs. Important components of p3d include a novel algorithm for automatic finding and tracing of spectra on the detector, and two methods of optimal spectrum extraction in addition to standard aperture extraction. p3d also provides tools to combine several images, perform wavelength calibration and flat field data. p3d is at the moment configured for four IFSs. In order to evaluate its performance we have tested the different components of the tool. For these tests we used both simulated and observational data. We demonstrate that for three of the IFSs a correction for so-called cross-talk due to overlapping spectra on the detector is required. Without such a correction spectra will be inaccurate, in particular if there is a significant intensity gradient across the object. Our tests showed that p3d is able to produce accurate results. p3d is a highly general and freely available tool. It is easily extended to include improved algorithms, new visualization tools and support for additional instruments. The program code can be downloaded from the p3d-project web site http://p3d.sourceforge.netComment: 18 pages, 15 figures, 3 tables, accepted for publication in A&

    Ecophysiology of coral reef primary producers across an upwelling gradient in the tropical central Pacific

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, M. D., Fox, M. D., Kelly, E. L. A., Zgliczynski, B. J., Sandin, S. A., & Smith, J. E. Ecophysiology of coral reef primary producers across an upwelling gradient in the tropical central Pacific. Plos One, 15(2), (2020): e0228448, doi:10.1371/journal.pone.0228448.Upwelling is an important source of inorganic nutrients in marine systems, yet little is known about how gradients in upwelling affect primary producers on coral reefs. The Southern Line Islands span a natural gradient of inorganic nutrient concentrations across the equatorial upwelling region in the central Pacific. We used this gradient to test the hypothesis that benthic autotroph ecophysiology is enhanced on nutrient-enriched reefs. We measured metabolism and photophysiology of common benthic taxa, including the algae Porolithon, Avrainvillea, and Halimeda, and the corals Pocillopora and Montipora. We found that temperature (27.2–28.7°C) was inversely related to dissolved inorganic nitrogen (0.46–4.63 μM) and surface chlorophyll a concentrations (0.108–0.147 mg m-3), which increased near the equator. Contrary to our prediction, ecophysiology did not consistently track these patterns in all taxa. Though metabolic rates were generally variable, Porolithon and Avrainvillea photosynthesis was highest at the most productive and equatorial island (northernmost). Porolithon photosynthetic rates also generally increased with proximity to the equator. Photophysiology (maximum quantum yield) increased near the equator and was highest at northern islands in all taxa. Photosynthetic pigments also were variable, but chlorophyll a and carotenoids in Avrainvillea and Montipora were highest at the northern islands. Phycobilin pigments of Porolithon responded most consistently across the upwelling gradient, with higher phycoerythrin concentrations closer to the equator. Our findings demonstrate that the effects of in situ nutrient enrichment on benthic autotrophs may be more complex than laboratory experiments indicate. While upwelling is an important feature in some reef ecosystems, ancillary factors may regulate the associated consequences of nutrient enrichment on benthic reef organisms.This work was supported by funding from the Moore Family Foundation, the Gordon and Betty Moore Foundation, the Scripps family, and anonymous donors. The funders had no role in study design, data collection and analysis, or preparation of the manuscript

    Late-time behaviour of the Einstein-Vlasov system with Bianchi I symmetry

    Full text link
    The late-time behaviour of the Einstein-dust system is well understood for homogeneous spacetimes. For the case of Bianchi I we have been able to show that the late-time behaviour of the Einstein-Vlasov system is well approximated by the Einstein-dust system assuming that one is close to the unique stationary solution which is the attractor of the Einstein-dust system.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010, to appear in Journal of Physics: Conference Series (JPCS

    Late-time behaviour of the Einstein-Vlasov system with Bianchi I symmetry

    Full text link
    The late-time behaviour of the Einstein-dust system is well understood for homogeneous spacetimes. For the case of Bianchi I we have been able to show that the late-time behaviour of the Einstein-Vlasov system is well approximated by the Einstein-dust system assuming that one is close to the unique stationary solution which is the attractor of the Einstein-dust system.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010, to appear in Journal of Physics: Conference Series (JPCS
    • …
    corecore