291 research outputs found
A Novel Statistical Method to Diagnose, Quantify and Correct Batch Effects in Genomic Studies.
Genome projects now generate large-scale data often produced at various time points by different laboratories using multiple platforms. This increases the potential for batch effects. Currently there are several batch evaluation methods like principal component analysis (PCA; mostly based on visual inspection), and sometimes they fail to reveal all of the underlying batch effects. These methods can also lead to the risk of unintentionally correcting biologically interesting factors attributed to batch effects. Here we propose a novel statistical method, finding batch effect (findBATCH), to evaluate batch effect based on probabilistic principal component and covariates analysis (PPCCA). The same framework also provides a new approach to batch correction, correcting batch effect (correctBATCH), which we have shown to be a better approach to traditional PCA-based correction. We demonstrate the utility of these methods using two different examples (breast and colorectal cancers) by merging gene expression data from different studies after diagnosing and correcting for batch effects and retaining the biological effects. These methods, along with conventional visual inspection-based PCA, are available as a part of an R package exploring batch effect (exploBATCH; https://github.com/syspremed/exploBATCH )
Molecular or Metabolic Reprograming: What Triggers Tumor Subtypes?
Tumor heterogeneity is reflected and influenced by genetic, epigenetic, and metabolic differences in cancer cells and their interactions with a complex microenvironment. This heterogeneity has resulted in the stratification of tumors into subtypes, mainly based on cancer-specific genomic or transcriptomic profiles. Subtyping can lead to biomarker identification for personalized diagnosis and therapy, but stratification alone does not explain the origins of tumor heterogeneity. Heterogeneity has traditionally been thought to arise from distinct mutations/aberrations in "driver" oncogenes. However, certain subtypes appear to be the result of adaptation to the disrupted microenvironment caused by abnormal tumor vasculature triggering metabolic switches. Moreover, heterogeneity persists despite the predominance of single oncogenic driver mutations, perhaps due to second metabolic or genetic "hits." In certain cancer types, existing subtypes have metabolic and transcriptomic phenotypes that are reminiscent of normal differentiated cells, whereas others reflect the phenotypes of stem or mesenchymal cells. The cell-of-origin may, therefore, play a role in tumor heterogeneity. In this review, we focus on how cancer cell-specific heterogeneity is driven by different genetic or metabolic factors alone or in combination using specific cancers to illustrate these concepts. Cancer Res; 76(18); 5195-200. ©2016 AACR
Micropropagation of White Palash tree (Butea monosperma (Lam.) Taub. Var. lutea (Witt.)).
An efficient and reproducible protocol is established for rapid in vitro multiplication of an endangered, valuable medicinal plant, Butea monosperma (Lam.) Taub. Var. lutea, through cotyledonary nodes of mature seeds. Among various cytokinins tested, high frequency of direct shoot regeneration was induced on Murashige and skoog (MS) medium supplemented with BAP, which found to be more effective and showed optimal response at 2 mg/L with a maximum number of 8.35±0.32 multiple shoots per explant. Proliferation of shoots was established by repeated subculturing on to same regeneration medium with 2-3 weeks of time interval. Rooting of regenerated shoots was achieved after 3 weeks of culture on MS medium containing 1 mg/L IBA. In vitro raised plantlets were transferred to pots containing sterilized soil and vermiculate mixture in 1:1 ratio and then shifted to greenhouse. Well established plantlets exhibited 75% survival rate
Secreted semaphorin 5A suppressed pancreatic tumour burden but increased metastasis and endothelial cell proliferation.
BACKGROUND: Our earlier reports demonstrated that membrane-bound semaphorin 5A (SEMA5A) is expressed in aggressive pancreatic cancer cells and tumours, and promotes tumour growth and metastasis. In this study, we examine whether (1) pancreatic cancer cells secrete SEMA5A and (2) that secreted SEMA5A modulates certain phenotypes associated with tumour progression, angiogenesis and metastasis through various other molecular factors and signalling proteins.
METHODS AND RESULTS: In this study, we show that human pancreatic cancer cell lines secrete the extracellular domain (ECD) of SEMA5A (SEMA5A-ECD) and overexpression of mouse Sema5A-ECD in Panc1 cells (not expressing SEMA5A; Panc1-Sema5A-ECD; control cells - Panc1-control) significantly increases their invasion in vitro via enhanced ERK phosphorylation. Interestingly, orthotopic injection of Panc1-Sema5A-ECD cells into athymic nude mice results in a lower primary tumour burden, but enhances the micrometastases to the liver as compared with Panc1-control cells. Furthermore, there is a significant increase in proliferation of endothelial cells treated with conditioned media (CM) from Panc1-Sema5A-ECD cells and a significant increase in microvessel density in Panc1-Sema5A-ECD orthotopic tumours compared with those from Panc1-control cells, suggesting that the increase in liver micrometastases is probably due to increased tumour angiogenesis. In addition, our data demonstrate that this increase in endothelial cell proliferation by Sema5A-ECD is mediated through the angiogenic molecules - interleukin-8 and vascular endothelial growth factor.
CONCLUSION: Taken together, these results suggest that a bioactive, secreted form of Sema5A-ECD has an intriguing and potentially important role in its ability to enhance pancreatic tumour invasiveness, angiogenesis and micrometastases
A Case Report on Longitudinal Collection of Tumour Biopsies for Gene Expression-Based Tumour Microenvironment Analysis from Pancreatic Cancer Patients Treated with Endoscopic Ultrasound Guided Radiofrequency Ablation.
BACKGROUND: Most patients with pancreatic ductal adenocarcinoma (PDAC) are metastatic at presentation with dismal prognosis warranting improved systemic therapy options. Longitudinal sampling for the assessment of treatment response poses a challenge for validating novel therapies. In this case study, we evaluate the feasibility of collecting endoscopic ultrasound (EUS)-guided longitudinal fine-needle aspiration biopsies (FNABs) from two PDAC patients and conduct gene expression studies associated with tumour microenvironment changes associated with radiofrequency ablation (RFA). METHODS: EUS-guided serial/longitudinal FNABs of tumour were collected before and after treatment from two stage III inoperable gemcitabine-treated PDAC patients treated with targeted RFA three times. Biopsies were analysed using a custom NanoString panel (144 genes) consisting of cancer and cancer-associated fibroblast (CAFs) subtypes and immune changes. CAF culture was established from one FNAB and characterised by immunofluorescence and immunoblotting. RESULTS: Two-course RFA led to the upregulation of the CD1E gene (involved in antigen presentation) in both patients 1 and 2 (4.5 and 3.9-fold changes) compared to baseline. Patient 1 showed increased T cell genes (CD4-8.7-fold change, CD8-35.7-fold change), cytolytic function (6.4-fold change) and inflammatory response (8-fold change). A greater than 2-fold upregulation of immune checkpoint genes was observed post-second RFA in both patients. Further, two-course RFA led to increased PDGFRα (4.5-fold change) and CAF subtypes B and C genes in patient 1 and subtypes A, B and D genes in patient 2. Patient 2-derived CAFs post-first RFA showed expression of PDGFRα, POSTN and MYH11 proteins. Finally, RFA led to the downregulation of classical PDAC subtype-specific genes in both patients. CONCLUSIONS: This case study suggests longitudinal EUS-FNAB as a potential resource to study tumour and microenvironmental changes associated with RFA treatment. A large sample size is required in the future to assess the efficacy and safety of the treatment and perform comprehensive statistical analysis of EUS-RFA-based molecular changes in PDAC
Incidence of Infectious Diseases in Patients Suffering from Renal Diseases
Background: Infection is an invasion of an organism’s body tissues by disease-causing agents, their multiplication, and the reaction of host tissues to the infectious agents and the toxins they produce. Patients with renal compromised states are more susceptible to infection than normal individuals. In the pre-dialysis era, about 45% of patients with the renal compromised state suffering from infection required hospitalization, while a total of about 78% of the enrolled subjects needed hospitalization. It was assumed that the debility caused by the uremic state increased the risk of infection, and the reversal of uremia would reduce the risk of infection.Aim: The main aim of the study is to report the incidence of infectious diseases in patients with renal compromised state and appropriate measures to be considered to control infectious conditions.Materials and Methods: The study was carried out as prospective and cross-sectional studies. During the study period, a total of 195 subjects were examined with the renal compromised state, of which 108 subjects were suffering from infectious co-morbidity, and were enrolled based on inclusion and exclusion criteria, which includes in-patients, out-patients, and patients on regular dialysis.Results: This shows the percentage prevalence of infections in patients with the renal compromised state is 55.38. Patients were found to show various infectious states.Conclusion: The conclusion shows the probability of encountering a subject with renal compromised state along with co-morbid infection is 0.55. Evidence-based international guidelines are of great value and are instrumental in helping reduce health-care-associated infections.Keywords: Incidence of infectious diseases, Renal compromised state, Renal disease
Comprehensive characterization of immune landscape of Indian and Western triple negative breast cancers.
PURPOSE: Triple-negative breast cancer (TNBC) is a heterogeneous disease with a significant challenge to effectively manage in the clinic worldwide. Immunotherapy may be beneficial to TNBC patients if responders can be effectively identified. Here we sought to elucidate the immune landscape of TNBCs by stratifying patients into immune-specific subtypes (immunotypes) to decipher the molecular and cellular presentations and signaling events of this heterogeneous disease and associating them with their clinical outcomes and potential treatment options. EXPERIMENTAL DESIGN: We profiled 730 immune genes in 88 retrospective Indian TNBC samples using the NanoString platform, established immunotypes using non-negative matrix factorization-based machine learning approach, and validated them using Western TNBCs (n=422; public datasets). Immunotype-specific gene signatures were associated with clinicopathological features, immune cell types, biological pathways, acute/chronic inflammatory responses, and immunogenic cell death processes. Responses to different immunotherapies associated with TNBC immunotypes were assessed using cross-cancer comparison to melanoma (n=504). Tumor-infiltrating lymphocytes (TILs) and pan-macrophage spatial marker expression were evaluated. RESULTS: We identified three robust transcriptome-based immunotypes in both Indian and Western TNBCs in similar proportions. Immunotype-1 tumors, mainly representing well-known claudin-low and immunomodulatory subgroups, harbored dense TIL infiltrates and T-helper-1 (Th1) response profiles associated with smaller tumors, pre-menopausal status, and a better prognosis. They displayed a cascade of events, including acute inflammation, damage-associated molecular patterns, T-cell receptor-related and chemokine-specific signaling, antigen presentation, and viral-mimicry pathways. On the other hand, immunotype-2 was enriched for Th2/Th17 responses, CD4+ regulatory cells, basal-like/mesenchymal immunotypes, and an intermediate prognosis. In contrast to the two T-cell enriched immunotypes, immunotype-3 patients expressed innate immune genes/proteins, including those representing myeloid infiltrations (validated by spatial immunohistochemistry), and had poor survival. Remarkably, a cross-cancer comparison analysis revealed the association of immunotype-1 with responses to anti-PD-L1 and MAGEA3 immunotherapies. CONCLUSION: Overall, the TNBC immunotypes identified in TNBCs reveal different prognoses, immune infiltrations, signaling, acute/chronic inflammation leading to immunogenic cell death of cancer cells, and potentially distinct responses to immunotherapies. The overlap in immune characteristics in Indian and Western TNBCs suggests similar efficiency of immunotherapy in both populations if strategies to select patients according to immunotypes can be further optimized and implemented
Identification and Characterization of Poorly Differentiated Invasive Carcinomas in a Mouse Model of Pancreatic Neuroendocrine Tumorigenesis
Pancreatic neuroendocrine tumors (PanNETs) are a relatively rare but clinically challenging tumor type. In particular, high grade, poorly-differentiated PanNETs have the worst patient prognosis, and the underlying mechanisms of disease are poorly understood. In this study we have identified and characterized a previously undescribed class of poorly differentiated PanNETs in the RIP1-Tag2 mouse model. We found that while the majority of tumors in the RIP1-Tag2 model are well-differentiated insulinomas, a subset of tumors had lost multiple markers of beta-cell differentiation and were highly invasive, leading us to term them poorly differentiated invasive carcinomas (PDICs). In addition, we found that these tumors exhibited a high mitotic index, resembling poorly differentiated (PD)-PanNETs in human patients. Interestingly, we identified expression of Id1, an inhibitor of DNA binding gene, and a regulator of differentiation, specifically in PDIC tumor cells by histological analysis. The identification of PDICs in this mouse model provides a unique opportunity to study the pathology and molecular characteristics of PD-PanNETs
- …