15 research outputs found

    Development of durian leaf disease detection on Android device

    Get PDF
    Durian is exceedingly abundant in the Philippines, providing incomes for smallholder farmers. But amidst these things, durian is still vulnerable to different plant diseases that can cause significant economic loss in the agricultural industry. The conventional way of dealing plant disease detection is through naked-eye observation done by experts. To control such diseases using the old method is extensively laborious, time-consuming and costly especially in dealing with large fields. Hence, the proponent’s objective of this study is to create a standalone mobile app for durian leaf disease detection using the transfer learning approach. In this approach, the chosen network MobileNets, is pre-trained with a large scale of general datasets namely ImageNet to effective function as a generic template for visual processing. The pre-trained network transfers all the learned parameters and set as a feature extractor for the target task to be executed. Four health conditions are addressed in this study, 10 per classification with a total of 40 samples tested to evaluate the accuracy of the system. The result showed 90% in overall accuracy for detecting algalspot, cercospora, leaf discoloration and healthy leaf

    Nickel-Catalyzed Heck-Type Reactions of Benzyl Chlorides and Simple Olefins

    No full text
    Nickel-catalyzed intermolecular benzylation and heterobenzylation of unactivated alkenes to provide functionalized allylbenzene derivatives are described. A wide range of both the benzyl chloride and alkene coupling partners are tolerated. In contrast to analogous palladium-catalyzed variants of this process, all reactions described herein employ electronically unbiased aliphatic olefins (including ethylene), proceed at room temperature, and provide 1,1-disubstituted olefins over the more commonly observed 1,2-disubstituted olefins with very high selectivity
    corecore