51 research outputs found

    Tracking Formation of a Lava Lake From Ground and Space: Masaya Volcano (Nicaragua), 2014–2017

    Get PDF
    A vigorously degassing lava lake appeared inside the Santiago pit crater of Masaya volcano (Nicaragua) in December 2015, after years of degassing with no (or minor) incandescence. Here we present an unprecedented-long (3 years) and continuous volcanic gas record that instrumentally characterizes the (re)activation of the lava lake. Our results show that, before appearance of the lake, the volcanic gas plume composition became unusually CO2 rich, as testified by high CO2/SO2 ratios (mean: 12.2 ± 6.3) and low H2O/CO2 ratios (mean: 2.3 ± 1.3). The volcanic CO2 flux also peaked in November 2015 (mean: 81.3 ± 40.6 kg/s; maximum: 247 kg/s). Using results of magma degassing models and budgets, we interpret this elevated CO2 degassing as sourced by degassing of a volatile-rich fast-overturning (3.6–5.2 m3 s−1) magma, supplying CO2-rich gas bubbles from minimum equivalent depths of 0.36–1.4 km. We propose this elevated gas bubble supply destabilized the shallow (<1 km) Masaya magma reservoir, leading to upward migration of vesicular (buoyant) resident magma, and ultimately to (re)formation of the lava lake. At onset of lava lake activity on 11 December 2015 (constrained by satellite-based MODIS thermal observations), the gas emissions transitioned to more SO2-rich composition, and the SO2 flux increased by a factor ∼40% (11.4 ± 5.2 kg/s) relative to background degassing (8.0 kg/s), confirming faster than normal (4.4 versus ∼3 m3 s−1) shallow magma convection. Based on thermal energy records, we estimate that only ∼0.8 of the 4.4 m3 s−1 of magma actually reached the surface to manifest into a convecting lava lake, suggesting inefficient transport of magma in the near-surface plumbing system

    Downregulation of Cinnamyl-Alcohol Dehydrogenase in Switchgrass by RNA Silencing Results in Enhanced Glucose Release after Cellulase Treatment

    Get PDF
    Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in monolignol biosynthesis and genetic evidence indicates CAD deficiency in grasses both decreases overall lignin, alters lignin structure and increases enzymatic recovery of sugars. To ascertain the effect of CAD downregulation in switchgrass, RNA mediated silencing of CAD was induced through Agrobacterium mediated transformation of cv. “Alamo” with an inverted repeat construct containing a fragment derived from the coding sequence of PviCAD2. The resulting primary transformants accumulated less CAD RNA transcript and protein than control transformants and were demonstrated to be stably transformed with between 1 and 5 copies of the T-DNA. CAD activity against coniferaldehyde, and sinapaldehyde in stems of silenced lines was significantly reduced as was overall lignin and cutin. Glucose release from ground samples pretreated with ammonium hydroxide and digested with cellulases was greater than in control transformants. When stained with the lignin and cutin specific stain phloroglucinol-HCl the staining intensity of one line indicated greater incorporation of hydroxycinnamyl aldehydes in the lignin

    Identification and Characterization of Four Missense Mutations in \u3ci\u3eBrown midrib\u3c/i\u3e 12 (\u3ci\u3eBmr12\u3c/i\u3e), the Caffeic \u3ci\u3eO\u3c/i\u3e-Methyltranferase (COMT) of Sorghum

    Get PDF
    Modifying lignin content and composition are targets to improve bioenergy crops for cellulosic conversion to biofuels. In sorghum and other C4 grasses, the brown midrib mutants have been shown to reduce lignin content and alter its composition. Bmr12 encodes the sorghum caffeic O-methyltransferase, which catalyzes the penultimate step in monolignol biosynthesis. From an EMS-mutagenized TILLING population, four bmr12 mutants were isolated. DNA sequencing identified the four missense mutations in the Bmr12 coding region, which changed evolutionarily conserved amino acids Ala71Val, Pro150Leu, Gly225Asp, and Gly325Ser. The previously characterized bmr12 mutants all contain premature stop codons. These newly identified mutants, along with the previously characterized bmr12-ref, represent the first allelic series of bmr12 mutants available in the same genetic background. The impacts of these newly identified mutations on protein accumulation, enzyme activity, Klason lignin content, lignin subunit composition, and saccharification yield were determined. Gly225Asp mutant greatly reduced protein accumulation, and Pro150Leu and Gly325Ser greatly impaired enzyme activity compared to wild type (WT). All four mutants significantly reduced Klason lignin content and altered lignin composition resulting in a significantly reduced S/G ratio relative to WT, but the overall impact of these mutations was less severe than bmr12-ref. Except for Gly325Ser, which is a hypomorphic mutant, all mutants increased the saccharification yield relative to WT. These mutants represent new tools to decrease lignin content and S/G ratio, possibly leading toward the ability to tailor lignin content and composition in the bioenergy grass sorghum

    Erratum to: Identification and Characterization of Four Missense Mutations in \u3ci\u3eBrown midrib12\u3c/i\u3e (\u3ci\u3eBmr12\u3c/i\u3e), the Caffeic acid \u3ci\u3eO\u3c/i\u3e-Methyltranferase (COMT) of Sorghum

    Get PDF
    The original version of this article unfortunately contained some mistakes. The name of the enzyme “Caffeic O-methyltransferase” should be read as “Caffeic acid O-Methyltranferase” throughout the paper, including the title. On Table 2, the fifth column should have been captured as part of the sub-heading “Unpretreated”. The corrected version is shown on the next page. Table 2 Variation in Klason lignin content and glucose yields obtained after enzymatic saccharification at 50 °C at 60 FPU/ g cellulase of native (unpretreated) stover after 4, 20, and 96 h, and of pretreated stover after 24

    Relatively short-term correlation among deformation, degassing, and seismicity: a case study from Concepcion volcano, Nicaragua

    No full text
    Concepcion is a frequently active composite volcano in Nicaragua, and is located on Ometepe Island, within Lake Nicaragua. Significant eruptive activity took place at this volcano between March and May 2010, consisting of ash and gas explosions (VEI 1-2). We compare geodetic baseline changes observed with global positioning system (GPS), sulfur dioxide flux (SO2), and seismic amplitude (SAM) data collected at Concepcion during April - June, 2010, and February - April, 2011. Time series analysis reveals a remarkable correlation among the data sets during 2010, when the volcano was erupting. In contrast, the volcano was at its background level of activity in 2011 and the statistical correlation among the time series is not significant for this period. We explain the emergence of correlation among the time series during eruptive activity through modeling of the GPS data with emplacement of a magma column in an open conduit. In the model, magma rose in the conduit, between May 5 and 14, 2010, from a shallow reservoir located at similar to 1.8 km depth. Later, between May 24 and 31, 2010, the top of the magma column descended to almost 600m depth, corresponding to the cessation of eruptive activity. Thus, cross-correlation and an integrated analysis of these geophysical time series on a timescale of days helps to reveal the dynamics of the magma plumbing system operating below Concepcion volcano

    Linking SO2 emission rates and seismicity by continuous wavelet transform: implications for volcanic surveillance at San Cristbal volcano, Nicaragua

    No full text
    San Cristbal volcano is the highest and one of the most active volcanoes in Nicaragua. Its persistently high activity during the past decade is characterized by strong degassing and almost annual VEI 1-2 explosions, which present a threat to the local communities. Following an eruption on 8 September 2012, the intervals between eruptions decreased significantly, which we interpret as the start of a new eruptive phase. We present here the results of semi-continuous SO2 flux measurements covering a period of 18 months, obtained by two scanning UV-DOAS instruments installed as a part of the network for observation of volcanic and atmospheric change project, and the results of real-time seismic amplitude measurements (RSAM) data. Our data comprise a series of small to moderately explosive events in December 2012, June 2013 and February 2014, which were accompanied by increased gas emissions and seismicity. In order to approach an early warning strategy, we present a statistical method for the joint analysis of gas flux and seismic data, by using continuous wavelet transform and cross-wavelet transform (XWT) methods. This analysis shows that the XWT coefficients of SO2 flux and RSAM are in good agreement with the occurrence of eruptive events and thus may be used to indicate magma ascent into the volcano edifice. Such multi-parameter surveillance efforts can be useful for the interpretation and surveillance of possible eruptive events and could thus be used by local institutions for the prediction of upcoming volcanic unrest

    Gravity and Geodesy of Concepción Volcano, Nicaragua

    No full text
    Concepción is currently the most active composite volcano in Nicaragua. Ash explosions of small to moderate size (volcano explosivity index 1–2) have occurred on a regular basis. Gravity data collected on and around the volcano between 2007 and 2010 confirm that a younger cone is built atop an older truncated edifice of denser material, predominantly lavas. The bulk density of the volcanic cone is 1764 kg m−3 (with an uncertainty of at least ±111 kg m−3), derived from gravity data. This estimated bulk density is significantly lower than densities (e.g., 2500 kg m−3) used in previous models of gravitational spreading of this volcano and suggests that the gravitational load of the edifice may be much lower than previously thought. The gravity data also revealed the existence of a possible northwest-southeast–oriented normal fault (parallel to the subduction zone). Episodic geodetic data gathered with dual-frequency global positioning system (GPS) instruments at five sites located around the volcano\u27s base show no significant change in baseline length during 8 yr and 2 yr of observations along separate baselines. Structures deformed after the Tierra Blanca Plinian eruption ca. 19 ka, which significantly altered the form and bulk density of the volcano, may be due to the spreading of the volcano, but may also be related to volcano loading, magmatic intrusions and their subsequent evolution, and other volcano-tectonic processes, or a combination of any of these factors. A joint interpretation of our gravity and geodetic GPS data of Concepción suggests that this volcano is not spreading in a continuous fashion; if it is episodically spreading, it is driven by magma intrusion rather than gravity. These results have important implications for volcanic hazards associated with Concepción Volcano. Although during the last 15 yr tephra fallout and volcanic debris flows (lahars) have been the pervasive hazards at this volcano, earthquakes from an eventual slip of the fault on the east-northeast side of the volcano (delineated from our gravity measurements) should be considered as another important hazard, which may severely damage the infrastructures in the island, and conceivably trigger a volcano flank collapse

    Magma–Tectonic Interactions in Nicaragua: The 1999 Seismic Swarm and Eruption of Cerro Negro Volcano

    No full text
    A low-energy (Volcanic Explosivity Index [VEI] 1), small-volume (0.001 km3 Dense Rock Equivalent [DRE]) eruption of highly crystalline basalt occurred at Cerro Negro volcano, Nicaragua, August 5–7, 1999. This eruption followed three earthquakes (each ∼Mw 5.2) with strike-slip and oblique-slip focal mechanisms, the first of which occurred approximately 11 h before eruptive activity and within 1 km of Cerro Negro. Surface ruptures formed during these events extend up to 4 km from Cerro Negro, but concentrate ∼1 km south of Cerro Negro. Surface ruptures did not occur within 300 m of the cone, however, three new vents formed on the south flank and base of Cerro Negro and on trend with the Cerro La Mula–Cerro Negro volcanic alignment. Earthquake swarms were located northwest and southeast of Cerro Negro and seismicity was elevated for up to 11 days after the initial event. The temporal and spatial patterns of earthquake swarms, surface ruptures, and the eruption location can be explained using the Hill [J. Geophys. Res. 82 (1977) 1347] model for earthquake swarms in volcanic regions, where an eruption is triggered by tectonically induced changes in the regional stress field. In this model, tectonic strain, rather than magmatic overpressure causes dilation of the conduit for magma ascent. Numerical simulations for the 1999 eruption illustrate that the observed velocities (up to 75 m s−1) and fountain heights (50–300 m) can be achieved by eruption of magma with little excess magmatic pressure, in response to changes in Coulomb stress along the Cerro La Mula–Cerro Negro alignment. These observations and models show that 1999 Cerro Negro activity was a tectonically induced small-volume eruption in an arc setting, with the accommodation of extensional strain by dike injection
    corecore