778 research outputs found
Network protocol scalability via a topological Kadanoff transformation
A natural hierarchical framework for network topology abstraction is
presented based on an analogy with the Kadanoff transformation and
renormalisation group in theoretical physics. Some properties of the
renormalisation group bear similarities to the scalability properties of
network routing protocols (interactions). Central to our abstraction are two
intimately connected and complementary path diversity units: simple cycles, and
cycle adjacencies. A recursive network abstraction procedure is presented,
together with an associated generic recursive routing protocol family that
offers many desirable features.Comment: 4 pages, 5 figures, PhysComNet 2008 workshop submissio
The study of methods of preliminary cooling of fruits
The studies were aimed at scientific grounding of expedience of combination of preliminary cooling of apples, pears and plums and their processing by antioxidant compositions before the long storage and also at establishing of the optimal regimes and methods of this technological operation. The objects of studies were apple, pear and plums fruits of the different pomological species. As a result of studies was offered the combined method that provides preliminary cooling of apple fruits firstly by hydro-cooling in solutions of antioxidant compositions during 1 hour to the temperature in fruit center 8,5 °С, then additional cooling in AOC solutions during 1,5 hours to the temperature in fruit center 9 °С, additional cooling in chamber of intensive cooling during 50 minutes to the temperature in fruit center 1°С. For plum: hydro-cooling in AOC solutions during 40 minutes to the temperature in fruit center 9 °С, additional cooling in chamber of intensive cooling during 30 minutes to the temperature in fruit center 1°С. The use of such method of preliminary cooling provides the fast decrease of intensity of breath and thermal flux of fruits and essentially decreases the lost of their mass. It favors the prolongation of term of storage of fruit raw material with maximal preservation of quality and biological value. The received data and their scientific grounding give a possibility to recommend producers to use the offered method of preliminary cooling in production condition
Spin electric effects in molecular antiferromagnets
Molecular nanomagnets show clear signatures of coherent behavior and have a
wide variety of effective low-energy spin Hamiltonians suitable for encoding
qubits and implementing spin-based quantum information processing. At the
nanoscale, the preferred mechanism for control of quantum systems is through
application of electric fields, which are strong, can be locally applied, and
rapidly switched. In this work, we provide the theoretical tools for the search
for single molecule magnets suitable for electric control. By group-theoretical
symmetry analysis we find that the spin-electric coupling in triangular
molecules is governed by the modification of the exchange interaction, and is
possible even in the absence of spin-orbit coupling. In pentagonal molecules
the spin-electric coupling can exist only in the presence of spin-orbit
interaction. This kind of coupling is allowed for both and
spins at the magnetic centers. Within the Hubbard model, we find a relation
between the spin-electric coupling and the properties of the chemical bonds in
a molecule, suggesting that the best candidates for strong spin-electric
coupling are molecules with nearly degenerate bond orbitals. We also
investigate the possible experimental signatures of spin-electric coupling in
nuclear magnetic resonance and electron spin resonance spectroscopy, as well as
in the thermodynamic measurements of magnetization, electric polarization, and
specific heat of the molecules.Comment: 31 pages, 24 figure
- …
