778 research outputs found

    Network protocol scalability via a topological Kadanoff transformation

    Full text link
    A natural hierarchical framework for network topology abstraction is presented based on an analogy with the Kadanoff transformation and renormalisation group in theoretical physics. Some properties of the renormalisation group bear similarities to the scalability properties of network routing protocols (interactions). Central to our abstraction are two intimately connected and complementary path diversity units: simple cycles, and cycle adjacencies. A recursive network abstraction procedure is presented, together with an associated generic recursive routing protocol family that offers many desirable features.Comment: 4 pages, 5 figures, PhysComNet 2008 workshop submissio

    The study of methods of preliminary cooling of fruits

    Get PDF
    The studies were aimed at scientific grounding of expedience of combination of preliminary cooling of apples, pears and plums and their processing by antioxidant compositions before the long storage and also at establishing of the optimal regimes and methods of this technological operation. The objects of studies were apple, pear and plums fruits of the different pomological species. As a result of studies was offered the combined method that provides preliminary cooling of apple fruits firstly by hydro-cooling in solutions of antioxidant compositions during 1 hour to the temperature in fruit center 8,5 °С, then additional cooling in AOC solutions during 1,5 hours to the temperature in fruit center 9 °С, additional cooling in chamber of intensive cooling during 50 minutes to the temperature in fruit center 1°С. For plum: hydro-cooling in AOC solutions during 40 minutes to the temperature in fruit center 9 °С, additional cooling in chamber of intensive cooling during 30 minutes to the temperature in fruit center 1°С. The use of such method of preliminary cooling provides the fast decrease of intensity of breath and thermal flux of fruits and essentially decreases the lost of their mass. It favors the prolongation of term of storage of fruit raw material with maximal preservation of quality and biological value. The received data and their scientific grounding give a possibility to recommend producers to use the offered method of preliminary cooling in production condition

    Spin electric effects in molecular antiferromagnets

    Full text link
    Molecular nanomagnets show clear signatures of coherent behavior and have a wide variety of effective low-energy spin Hamiltonians suitable for encoding qubits and implementing spin-based quantum information processing. At the nanoscale, the preferred mechanism for control of quantum systems is through application of electric fields, which are strong, can be locally applied, and rapidly switched. In this work, we provide the theoretical tools for the search for single molecule magnets suitable for electric control. By group-theoretical symmetry analysis we find that the spin-electric coupling in triangular molecules is governed by the modification of the exchange interaction, and is possible even in the absence of spin-orbit coupling. In pentagonal molecules the spin-electric coupling can exist only in the presence of spin-orbit interaction. This kind of coupling is allowed for both s=1/2s=1/2 and s=3/2s=3/2 spins at the magnetic centers. Within the Hubbard model, we find a relation between the spin-electric coupling and the properties of the chemical bonds in a molecule, suggesting that the best candidates for strong spin-electric coupling are molecules with nearly degenerate bond orbitals. We also investigate the possible experimental signatures of spin-electric coupling in nuclear magnetic resonance and electron spin resonance spectroscopy, as well as in the thermodynamic measurements of magnetization, electric polarization, and specific heat of the molecules.Comment: 31 pages, 24 figure
    corecore