87 research outputs found
No light shining through a wall : new results from a photoregeneration experiment
Recently, axion-like particle search has received renewed interest. In
particular, several groups have started ``light shining through a wall''
experiments based on magnetic field and laser both continuous, which is very
demanding in terms of detector background. We present here the 2 limits
obtained so far with our novel set-up consisting of a pulsed magnetic field and
a pulsed laser. In particular, we have found that the axion-like particle two
photons inverse coupling constant is GeV provided that the
particle mass 1 meV. Our results definitively invalidate
the axion interpretation of the original PVLAS optical measurements with a
confidence level greater than 99.9%.Comment: Version that will appear in Physical Review Letters, Vol. 99, n. 18,
(2 Nov 2007
About the connection between vacuum birefringence and the light-light scattering amplitude
Birefringence phenomena stemming from vacuum polarization are revisited in
the framework of coherent scattering. Based on photon-photon scattering, our
analysis brings out the direct connection between this process and vacuum
birefringence. We show how this procedure can be extended to the Kerr and the
Cotton-Mouton birefringences in vacuum, thus providing a unified treatment of
various polarization schemes, including those involving static fields
Demonstration of the spatial separation of the entangled quantum side-bands of an optical field
Quantum optics experiments on "bright" beams typically probe correlations
between side-band modes. However the extra degree of freedom represented by
this dual mode picture is generally ignored. We demonstrate the experimental
operation of a device which can be used to separate the quantum side-bands of
an optical field. We use this device to explicitly demonstrate the quantum
entanglement between the side-bands of a squeezed beam
Synchronization of Hamiltonian motion and dissipative effects in optical lattices: Evidence for a stochastic resonance
We theoretically study the influence of the noise strength on the excitation
of the Brillouin propagation modes in a dissipative optical lattice. We show
that the excitation has a resonant behavior for a specific amount of noise
corresponding to the precise synchronization of the Hamiltonian motion on the
optical potential surfaces and the dissipative effects associated with optical
pumping in the lattice. This corresponds to the phenomenon of stochastic
resonance. Our results are obtained by numerical simulations and correspond to
the analysis of microscopic quantities (atomic spatial distributions) as well
as macroscopic quantities (enhancement of spatial diffusion and pump-probe
spectra). We also present a simple analytical model in excellent agreement with
the simulations
Birefringence of interferential mirrors at normal incidence Experimental and computational study
In this paper we present a review of the existing data on interferential
mirror birefringence. We also report new measurements of two sets of mirrors
that confirm that mirror phase retardation per reflection decreases when mirror
reflectivity increases. We finally developed a computational code to calculate
the expected phase retardation per reflection as a function of the total number
of layers constituting the mirror. Different cases have been studied and we
have compared computational results with the trend of the experimental data.
Our study indicates that the origin of the mirror intrinsic birefringence can
be ascribed to the reflecting layers close to the substrate.Comment: To be published in Applied Physics
Rectification and Phase Locking for Particles on Two Dimensional Periodic Substrates
We show that a novel rectification phenomena is possible for overdamped
particles interacting with a 2D periodic substrate and driven with a
longitudinal DC drive and a circular AC drive. As a function of DC amplitude,
the longitudinal velocity increases in a series of quantized steps with
transverse rectification occuring near these transitions. We present a simple
model that captures the quantization and rectification behaviors.Comment: 4 pages, 4 postscript figure
Characterisation of a three-dimensional Brownian motor in optical lattices
We present here a detailed study of the behaviour of a three dimensional
Brownian motor based on cold atoms in a double optical lattice [P. Sjolund et
al., Phys. Rev. Lett. 96, 190602 (2006)]. This includes both experiments and
numerical simulations of a Brownian particle. The potentials used are spatially
and temporally symmetric, but combined spatiotemporal symmetry is broken by
phase shifts and asymmetric transfer rates between potentials. The diffusion of
atoms in the optical lattices is rectified and controlled both in direction and
speed along three dimensions. We explore a large range of experimental
parameters, where irradiances and detunings of the optical lattice lights are
varied within the dissipative regime. Induced drift velocities in the order of
one atomic recoil velocity have been achieved.Comment: 8 pages, 14 figure
Molecular motor that never steps backwards
We investigate the dynamics of a classical particle in a one-dimensional
two-wave potential composed of two periodic potentials, that are
time-independent and of the same amplitude and periodicity. One of the periodic
potentials is externally driven and performs a translational motion with
respect to the other. It is shown that if one of the potentials is of the
ratchet type, translation of the potential in a given direction leads to motion
of the particle in the same direction, whereas translation in the opposite
direction leaves the particle localized at its original location. Moreover,
even if the translation is random, but still has a finite velocity, an
efficient directed transport of the particle occurs.Comment: 4 pages, 5 figures, Phys. Rev. Lett. (in print
Axion-like-particle search with high-intensity lasers
We study ALP-photon-conversion within strong inhomogeneous electromagnetic
fields as provided by contemporary high-intensity laser systems. We observe
that probe photons traversing the focal spot of a superposition of Gaussian
beams of a single high-intensity laser at fundamental and frequency-doubled
mode can experience a frequency shift due to their intermittent propagation as
axion-like-particles. This process is strongly peaked for resonant masses on
the order of the involved laser frequencies. Purely laser-based experiments in
optical setups are sensitive to ALPs in the mass range and can
thus complement ALP searches at dipole magnets.Comment: 25 pages, 2 figure
Disorder Induced Diffusive Transport In Ratchets
The effects of quenched disorder on the overdamped motion of a driven
particle on a periodic, asymmetric potential is studied. While for the
unperturbed potential the transport is due to a regular drift, the quenched
disorder induces a significant additional chaotic ``diffusive'' motion. The
spatio-temporal evolution of the statistical ensemble is well described by a
Gaussian distribution, implying a chaotic transport in the presence of quenched
disorder.Comment: 10 pages, 4 EPS figures; submitted to Phys. Rev. Letter
- …
