4,075 research outputs found

    Preparations for Independence and Financial Security in Later Life: A Conceptual Framework and Application to Canada

    Get PDF
    In this paper, we develop a conceptual framework to describe an individual's preparations for later life. Situated in the life course perspective, this provides a framework that invites a more comprehensive and systematic study of preparations for later life. It describes a dynamic process that portrays the interplay between social structure and human agency. Through its consideration of collective preparations (the public protection programs offered by the state), individual preparations (financial and non- financial), and the interplay between the two, this framework provides fresh insight into the existing literature on retirement planning, the timing of retirement, savings, and consumption behaviour in later life. Moreover, the model may be used to structure research questions, to guide policy decision making and to point the direction for the design and content of future research studies. While the purpose of this paper is primarily the development of a conceptual model, we draw on empirical examples from the 1991 Survey of Aging and Independence (SAI) to illustrate some aspects of the model to Canada. We conclude by suggesting a number of research and questions that may be generated from the model.retirement planning; savings; SAI

    Scalable Compression of Deep Neural Networks

    Full text link
    Deep neural networks generally involve some layers with mil- lions of parameters, making them difficult to be deployed and updated on devices with limited resources such as mobile phones and other smart embedded systems. In this paper, we propose a scalable representation of the network parameters, so that different applications can select the most suitable bit rate of the network based on their own storage constraints. Moreover, when a device needs to upgrade to a high-rate network, the existing low-rate network can be reused, and only some incremental data are needed to be downloaded. We first hierarchically quantize the weights of a pre-trained deep neural network to enforce weight sharing. Next, we adaptively select the bits assigned to each layer given the total bit budget. After that, we retrain the network to fine-tune the quantized centroids. Experimental results show that our method can achieve scalable compression with graceful degradation in the performance.Comment: 5 pages, 4 figures, ACM Multimedia 201

    Charge Renormalization, Effective Interactions, and Thermodynamics of Deionized Colloidal Suspensions

    Full text link
    Thermodynamic properties of charge-stabilised colloidal suspensions depend sensitively on the effective charge of the macroions, which can be substantially lower than the bare charge in the case of strong counterion-macroion association. A theory of charge renormalization is proposed, combining an effective one-component model of charged colloids with a thermal criterion for distinguishing between free and associated counterions. The theory predicts, with minimal computational effort, osmotic pressures of deionized suspensions of highly charged colloids in close agreement with large-scale simulations of the primitive model.Comment: 15 pages, 7 figure

    Scale – Time – Complexity: engaging, entangling, and communicating ecology

    Get PDF
    This project proposes a forum for discussion that questions how we engage with our ecology. The panel will be framed within an acknowledgment of scale, time, and complexity as an entry point into a conversation about our local ecology and the universe beyond. The panellists’ aim to initiate a dialogue by situating the discussion around their own art and design research practices. These practices have emerged from local investigations into ecological issues that evolved into two overlapping research clusters, Art and Ecology, and Design and Innovation for Sustainability, at AUT University, in Auckland New Zealand. In our first collaborative project we explore how we might connect with and communicate ‘ecology’, in methods and practice that recognizes and embraces scale, time and complexity as a tactic into the subject, rather than as a barrier to engagement and the development of potential solutions

    Stability of Colloidal Quasicrystals

    Full text link
    Freezing of charge-stabilized colloidal suspensions and relative stabilities of crystals and quasicrystals are studied using thermodynamic perturbation theory. Macroion interactions are modelled by effective pair potentials combining electrostatic repulsion with polymer-depletion or van der Waals attraction. Comparing free energies -- counterion terms included -- for elementary crystals and rational approximants to icosahedral quasicrystals, parameters are identified for which one-component quasicrystals are stabilized by a compromise between packing entropy and cohesive energy.Comment: 6 pages, 4 figure

    Ecological Drivers of Community Cohesion

    Get PDF
    From protocellular to societal, networks of living systems are complex and multiscale. Discerning the factors that facilitate assembly of these intricate interdependencies using pairwise interactions can be nearly impossible. To facilitate a greater understanding, we developed a mathematical and computational model based on a synthetic four-strain Saccharomyces cerevisiae interdependent system. Specifically, we aimed to provide a greater understanding of how ecological factors influence community dynamics. By leveraging transiently structured ecologies, we were able to drive community cohesion. We show how ecological interventions could reverse or slow the extinction rate of a cohesive community. An interconnected system first needs to persist long enough to be a subject of natural selection. Our emulation of Darwin’s “warm little ponds” with an ecology governed by transient compartmentalization provided the necessary persistence. Our results reveal utility across scales of organization, stressing the importance of cyclic processes in major evolutionary transitions, engineering of synthetic microbial consortia, and conservation biology.journal articl

    Power Balance in Aerodynamic Flows

    Get PDF
    A control volume analysis of the compressible viscous flow about an aircraft is performed,including integrated propulsors and flow control systems. In contrast to most past analyses which have focused on forces and momentum flow, in particular thrust and drag, the present analysis focuses on mechanical power and kinetic energy flow. The result is a clear identification and quantification of all the power sources, power sinks, and their interactions which are present in any aerodynamic flow. The formulation does not require any separate definitions of thrust and drag, and hence it is especially useful for analysis and optimization of aerodynamic configurations which have tightly integrated propulsion and boundary layer control systems

    Combining Unsupervised and Supervised Learning for Discovering Disease Subclasses

    Get PDF
    Diseases are often umbrella terms for many subcategories of disease. The identification of these subcategories is vital if we are to develop personalised treatments that are better focussed on individual patients. In this short paper, we explore the use of a combination of unsupervised learning to identify potential subclasses, and supervised learning to build models for better predicting a number of different health outcomes for patients that suffer from systemic sclerosis, a rare chronic connective tissue disorder - but one that shares many characteristics with other diseases. We explore a number of different algorithms for constructing models that simultaneously predict health outcomes and identify subcategories

    A modelling study of the latitudinal variations in the nighttime plasma temperatures of the equatorial topside ionosphere during northern winter at solar maximum

    No full text
    International audienceLatitudinal variations in the nighttime plasma temperatures of the equatorial topside ionosphere during northern winter at solar maximum have been examined by using values modelled by SUPIM (Sheffield University Plasmasphere Ionosphere Model) and observations made by the DMSP F10 satellite at 21.00 LT near 800 km altitude. The modelled values confirm that the crests observed near 15° latitude in the winter hemisphere are due to adiabatic heating and the troughs observed near the magnetic equator are due to adiabatic cooling as plasma is transported along the magnetic field lines from the summer hemisphere to the winter hemisphere. The modelled values also confirm that the interhemispheric plasma transport needed to produce the required adiabatic heating/cooling can be induced by F-region neutral winds. It is shown that the longitudinal variations in the observed troughs and crests arise mainly from the longitudinal variations in the magnetic meridional wind. At longitudes where the magnetic declination angle is positive the eastward geographic zonal wind combines with the northward (summer hemisphere to winter hemisphere) geographic meridional wind to enhance the northward magnetic meridional wind. This leads to deeper troughs and enhanced crests. At longitudes where the magnetic declination angle is negative the eastward geographic zonal wind opposes the northward geographic meridional wind and the trough depth and crest values are reduced. The characteristic features of the troughs and crests depend, in a complicated manner, on the field-aligned flow of plasma, thermal conduction, and inter-gas heat transfer. At the latitudes of the troughs/crests, the low/high plasma temperatures lead to increased/decreased plasma concentrations.Key words: Ionosphere (equatorial ionosphere; ionosphere-atmosphere interactions
    • 

    corecore