4,213 research outputs found
Weak charge form factor and radius of 208Pb through parity violation in electron scattering
We use distorted wave electron scattering calculations to extract the weak
charge form factor F_W(q), the weak charge radius R_W, and the point neutron
radius R_n, of 208Pb from the PREX parity violating asymmetry measurement. The
form factor is the Fourier transform of the weak charge density at the average
momentum transfer q=0.475 fm. We find F_W(q) =0.204 \pm 0.028 (exp) \pm
0.001 (model). We use the Helm model to infer the weak radius from F_W(q). We
find R_W= 5.826 \pm 0.181 (exp) \pm 0.027 (model) fm. Here the exp error
includes PREX statistical and systematic errors, while the model error
describes the uncertainty in R_W from uncertainties in the surface thickness
\sigma of the weak charge density. The weak radius is larger than the charge
radius, implying a "weak charge skin" where the surface region is relatively
enriched in weak charges compared to (electromagnetic) charges. We extract the
point neutron radius R_n=5.751 \pm 0.175 (exp) \pm 0.026 (model) \pm 0.005
(strange) fm$, from R_W. Here there is only a very small error (strange) from
possible strange quark contributions. We find R_n to be slightly smaller than
R_W because of the nucleon's size. Finally, we find a neutron skin thickness of
R_n-R_p=0.302\pm 0.175 (exp) \pm 0.026 (model) \pm 0.005 (strange) fm, where
R_p is the point proton radius.Comment: 5 pages, 1 figure, published in Phys Rev. C. Only one change in this
version: we have added one author, also to metadat
Measurement of the Neutron Radius of 208Pb Through Parity-Violation in Electron Scattering
We report the first measurement of the parity-violating asymmetry A_PV in the
elastic scattering of polarized electrons from 208Pb. A_PV is sensitive to the
radius of the neutron distribution (Rn). The result A_PV = 0.656 \pm 0.060
(stat) \pm 0.014 (syst) ppm corresponds to a difference between the radii of
the neutron and proton distributions Rn - Rp = 0.33 +0.16 -0.18 fm and provides
the first electroweak observation of the neutron skin which is expected in a
heavy, neutron-rich nucleus.Comment: 6 pages, 1 figur
Search for a new gauge boson in the Experiment (APEX)
We present a search at Jefferson Laboratory for new forces mediated by
sub-GeV vector bosons with weak coupling to electrons. Such a
particle can be produced in electron-nucleus fixed-target scattering and
then decay to an pair, producing a narrow resonance in the QED trident
spectrum. Using APEX test run data, we searched in the mass range 175--250 MeV,
found no evidence for an reaction, and set an upper limit of
. Our findings demonstrate that fixed-target
searches can explore a new, wide, and important range of masses and couplings
for sub-GeV forces.Comment: 5 pages, 5 figures, references adde
Measurement of pretzelosity asymmetry of charged pion production in Semi-Inclusive Deep Inelastic Scattering on a polarized He target
An experiment to measure single-spin asymmetries in semi-inclusive production
of charged pions in deep-inelastic scattering on a transversely polarized
He target was performed at Jefferson Lab in the kinematic region of
and . The pretzelosity asymmetries on
He, which can be expressed as the convolution of the
transverse momentum dependent distribution functions and the Collins
fragmentation functions in the leading order, were measured for the first time.
Using the effective polarization approximation, we extracted the corresponding
neutron asymmetries from the measured He asymmetries and cross-section
ratios between the proton and He. Our results show that for both
on He and on the neutron the pretzelosity asymmetries are
consistent with zero within experimental uncertainties.Comment: 6 pages, 3 figures; enlarged the legends in Fig.3; added 3 citation
Cross Section Measurements of Charged Pion Photoproduction in Hydrogen and Deuterium from 1.1 to 5.5 GeV
The differential cross section for the gamma +n --> pi- + p and the gamma + p
--> pi+ n processes were measured at Jefferson Lab. The photon energies ranged
from 1.1 to 5.5 GeV, corresponding to center-of-mass energies from 1.7 to 3.4
GeV. The pion center-of-mass angles varied from 50 degree to 110 degree. The
pi- and pi+ photoproduction data both exhibit a global scaling behavior at high
energies and high transverse momenta, consistent with the constituent counting
rule prediction and the existing pi+ data. The data suggest possible
substructure of the scaling behavior, which might be oscillations around the
scaling value. The data show an enhancement in the scaled cross section at
center-of-mass energy near 2.2 GeV. The differential cross section ratios at
high energies and high transverse momenta can be described by calculations
based on one-hard-gluon-exchange diagrams.Comment: 18 pages, 19 figure
Quark-Hadron Duality in Neutron (3He) Spin Structure
We present experimental results of the first high-precision test of
quark-hadron duality in the spin-structure function g_1 of the neutron and
He using a polarized 3He target in the four-momentum-transfer-squared range
from 0.7 to 4.0 (GeV/c)^2. Global duality is observed for the spin-structure
function g_1 down to at least Q^2 = 1.8 (GeV/c)^2 in both targets. We have also
formed the photon-nucleon asymmetry A_1 in the resonance region for 3He and
found no strong Q^2-dependence above 2.2 (GeV/c)^2.Comment: 13 pages, 3 figure
- …
