8,159 research outputs found
The Deuterium-Burning Mass Limit for Brown Dwarfs and Giant Planets
There is no universally acknowledged criterion to distinguish brown dwarfs
from planets. Numerous studies have used or suggested a definition based on an
object's mass, taking the ~13-Jupiter mass (M_J) limit for the ignition of
deuterium. Here, we investigate various deuterium-burning masses for a range of
models. We find that, while 13 M_J is generally a reasonable rule of thumb, the
deuterium fusion mass depends on the helium abundance, the initial deuterium
abundance, the metallicity of the model, and on what fraction of an object's
initial deuterium abundance must combust in order for the object to qualify as
having burned deuterium. Even though, for most proto-brown dwarf conditions,
50% of the initial deuterium will burn if the object's mass is ~(13.0 +/-
0.8)M_J, the full range of possibilities is significantly broader. For models
ranging from zero-metallicity to more than three times solar metallicity, the
deuterium burning mass ranges from ~11.0 M_J (for 3-times solar metallicity,
10% of initial deuterium burned) to ~16.3 M_J (for zero metallicity, 90% of
initial deuterium burned).Comment: "Models" section expanded, references added, accepted by Ap
Sympathetic cooling of He ions in a radiofrequency trap
We have generated Coulomb crystals of ultracold He ions in a linear
radiofrequency trap, by sympathetic cooling via laser--cooled Be.
Stable crystals containing up to 150 localized He ions at 20 mK were
obtained. Ensembles or single ultracold He ions open up interesting
perspectives for performing precision tests of QED and measurements of nuclear
radii. The present work also indicates the feasibility of cooling and
crystallizing highly charged atomic ions using Be as coolant.Comment: 4 pages, 2 figure
Mu and Tau Neutrino Thermalization and Production in Supernovae: Processes and Timescales
We investigate the rates of production and thermalization of and
neutrinos at temperatures and densities relevant to core-collapse
supernovae and protoneutron stars. Included are contributions from electron
scattering, electron-positron annihilation, nucleon-nucleon bremsstrahlung, and
nucleon scattering. For the scattering processes, in order to incorporate the
full scattering kinematics at arbitrary degeneracy, the structure function
formalism developed by Reddy et al. (1998) and Burrows and Sawyer (1998) is
employed. Furthermore, we derive formulae for the total and differential rates
of nucleon-nucleon bremsstrahlung for arbitrary nucleon degeneracy in
asymmetric matter. We find that electron scattering dominates nucleon
scattering as a thermalization process at low neutrino energies
( MeV), but that nucleon scattering is always faster
than or comparable to electron scattering above MeV. In
addition, for g cm, MeV, and
neutrino energies MeV, nucleon-nucleon bremsstrahlung always
dominates electron-positron annihilation as a production mechanism for
and neutrinos.Comment: 29 pages, LaTeX (RevTeX), 13 figures, submitted to Phys. Rev. C. Also
to be found at anonymous ftp site http://www.astrophysics.arizona.edu; cd to
pub/thompso
Many-Body Corrections to Charged-Current Neutrino Absorption Rates in Nuclear Matter
Including nucleon--nucleon correlations due to both Fermi statistics and
nuclear forces, we have developed a general formalism for calculating the
charged--current neutrino--nucleon absorption rates in nuclear matter. We find
that at one half nuclear density many--body effects alone suppress the rates by
a factor of two and that the suppression factors increase to 5 at
g cm. The associated increase in the neutrino--matter
mean--free--paths parallels that found for neutral--current interactions and
opens up interesting possibilities in the context of the delayed supernova
mechanism and protoneutron star cooling.Comment: 11 pages, APS REVTeX format, 1 PostScript figure, uuencoded
compressed, and tarred, submitted to Physical Review Letter
Neutrino Signatures and the Neutrino-Driven Wind in Binary Neutron Star Mergers
We present VULCAN/2D multigroup flux-limited-diffusion radiation-hydrodynamics simulations of binary neutron star mergers, using the Shen equation of state, covering âł 100 ms, and starting from azimuthal-averaged two-dimensional slices obtained from three-dimensional smooth-particle-hydrodynamics simulations of Rosswog & Price for 1.4Mâ (baryonic) neutron stars with no initial spins, co-rotating spins, or counter-rotating spins. Snapshots are post-processed at 10 ms intervals with a multiangle neutrino-transport solver. We find polar-enhanced neutrino luminosities, dominated by ¯νe and âνΟâ neutrinos at the peak, although νe emission may be stronger at late times. We obtain typical peak neutrino energies for νe, ¯νe, and âνΟâ of âź12, âź16, and âź22 MeV, respectively. The supermassive neutron star (SMNS) formed from the merger has a cooling timescale of âž 1 s. Charge-current neutrino reactions lead to the formation of a thermally driven bipolar wind with (M¡) âź 10^â3 Mâ s^â1 and baryon-loading in the polar regions, preventing any production of a Îł-ray burst prior to black hole formation. The large budget of rotational free energy suggests that magneto-rotational effects could produce a much-greater polar mass loss. We estimate that âž 10^â4 Mâ of material with an electron fraction in the range 0.1â0.2 becomes unbound during this SMNS phase as a result of neutrino heating. We present a new formalism to compute the νi ¯νi annihilation rate based on moments of the neutrino-specific intensity computed with our multiangle solver. Cumulative annihilation rates, which decay as âźt^â1.8, decrease over our 100 ms window from a few Ă1050 to âź 1049 erg sâ1, equivalent to a few Ă10^54 to âź10^53 eâe+ pairs per second
Shear horizontal (SH) ultrasound wave propagation around smooth corners
Shear horizontal (SH) ultrasound guided waves are being used in an increasing number of non-destructive testing (NDT) applications. One advantage SH waves have over some wave types, is their ability to propagate around curved surfaces with little energy loss; to understand the geometries around which they could propagate, the wave reflection must be quantified. A 0.83 mm thick aluminium sheet was placed in a bending machine, and a shallow bend was introduced. Periodically-poled magnet (PPM) electromagnetic acoustic transducers (EMATs), for emission and reception of SH waves, were placed on the same side of the bend, so that reflected waves were received. Additional bending of the sheet demonstrated a clear relationship between bend angles and the reflected signal. Models suggest that the reflection is a linear superposition of the reflections from each bend segment, such that sharp turns lead to a larger peak-to-peak amplitude, in part due to increased phase coherence
Shock Breakout in Core-Collapse Supernovae and its Neutrino Signature
(Abridged) We present results from dynamical models of core-collapse
supernovae in one spatial dimension, employing a newly-developed Boltzmann
neutrino radiation transport algorithm, coupled to Lagrangean hydrodynamics and
a consistent high-density nuclear equation of state. We focus on shock breakout
and its neutrino signature and follow the dynamical evolution of the cores of
11 M_sun, 15 M_sun, and 20 M_sun progenitors through collapse and the first 250
milliseconds after bounce. We examine the effects on the emergent neutrino
spectra, light curves, and mix of species of artificial opacity changes, the
number of energy groups, the weak magnetism/recoil corrections, nucleon-nucleon
bremsstrahlung, neutrino-electron scattering, and the compressibility of
nuclear matter. Furthermore, we present the first high-resolution look at the
angular distribution of the neutrino radiation field both in the
semi-transparent regime and at large radii and explore the accuracy with which
our tangent-ray method tracks the free propagation of a pulse of radiation in a
near vacuum. Finally, we fold the emergent neutrino spectra with the
efficiencies and detection processes for a selection of modern underground
neutrino observatories and argue that the prompt electron-neutrino breakout
burst from the next galactic supernova is in principle observable and usefully
diagnostic of fundamental collapse/supernova behavior. Though we are not in
this study focusing on the supernova mechanism per se, our simulations support
the theoretical conclusion (already reached by others) that spherical (1D)
supernovae do not explode when good physics and transport methods are employed.Comment: 16 emulateapj pages, plus 24 postscript figures, accepted to The
Astrophysical Journal; text revised; neutrino oscillation section expanded;
Fig. 22 correcte
Asymmetric neutrino emission due to neutrino-nucleon scatterings in supernova magnetic fields
We derive the cross section of neutrino-nucleon scatterings in supernova
magnetic fields, including weak-magnetism and recoil corrections. Since the
weak interaction violates the parity, the scattering cross section
asymmetrically depends on the directions of the neutrino momenta to the
magnetic field; the origin of pulsar kicks may be explained by the mechanism.
An asymmetric neutrino emission (a drift flux) due to neutrino-nucleon
scatterings is absent at the leading level of , where
is the nucleon magneton, is the magnetic field strength, and is
the matter temperature at a neutrinosphere. This is because at this level the
drift flux of the neutrinos are exactly canceled by that of the antineutrinos.
Hence, the relevant asymmetry in the neutrino emission is suppressed by much
smaller coefficient of , where is the nucleon mass;
detailed form of the relevant drift flux is also derived from the scattering
cross section, using a simple diffusion approximation. It appears that the
asymmetric neutrino emission is too small to induce the observed pulsar kicks.
However, we note the fact that the drift flux is proportional to the deviation
of the neutrino distribution function from the value of thermal equilibrium at
neutrinosphere. Since the deviation can be large for non-electron neutrinos, it
is expected that there occurs cancellation between the deviation and the small
suppression factor of . Using a simple parameterization,
we show that the drift flux due to neutrino-nucleon scatterings may be
comparable to the leading term due to beta processes with nucleons, which has
been estimated to give a relevant kick velocity when the magnetic field is
sufficiently strong as -- G.Comment: 19 pages, 1 figure. Accepted by Physical Review
z'-band Ground-Based Detection of the Secondary Eclipse of WASP-19b
We present the ground-based detection of the secondary eclipse of the
transiting exoplanet WASP-19b. The observations were made in the Sloan z'-band
using the ULTRACAM triple-beam CCD camera mounted on the NTT. The measurement
shows a 0.088\pm0.019% eclipse depth, matching previous predictions based on H-
and K-band measurements. We discuss in detail our approach to the removal of
errors arising due to systematics in the data set, in addition to fitting a
model transit to our data. This fit returns an eclipse centre, T0, of
2455578.7676 HJD, consistent with a circular orbit. Our measurement of the
secondary eclipse depth is also compared to model atmospheres of WASP-19b, and
is found to be consistent with previous measurements at longer wavelengths for
the model atmospheres we investigated.Comment: 20 pages, 10 figures. Published in the ApJ Supplement serie
Modeling the Formation of Clouds in Brown Dwarf Atmospheres
Because the opacity of clouds in substellar mass object (SMO) atmospheres
depends on the composition and distribution of particle sizes within the cloud,
a credible cloud model is essential for accurately modeling SMO spectra and
colors. We present a one--dimensional model of cloud particle formation and
subsequent growth based on a consideration of basic cloud microphysics. We
apply this microphysical cloud model to a set of synthetic brown dwarf
atmospheres spanning a broad range of surface gravities and effective
temperatures (g_surf = 1.78 * 10^3 -- 3 * 10^5 cm/s^2 and T_eff = 600 -- 1600
K) to obtain plausible particle sizes for several abundant species (Fe,
Mg2SiO4, and Ca2Al2SiO7). At the base of the clouds, where the particles are
largest, the particle sizes thus computed range from ~5 microns to over 300
microns in radius over the full range of atmospheric conditions considered. We
show that average particle sizes decrease significantly with increasing brown
dwarf surface gravity. We also find that brown dwarfs with higher effective
temperatures have characteristically larger cloud particles than those with
lower effective temperatures. We therefore conclude that it is unrealistic when
modeling SMO spectra to apply a single particle size distribution to the entire
class of objects.Comment: 25 pages; 8 figures. We have added considerable detail describing the
physics of the cloud model. We have also added discussions of the issues of
rainout and the self-consistent coupling of clouds with brown dwarf
atmospheric models. We have updated figures 1, 3, and 4 with new vertical
axis labels and new particle sizes for forsterite and gehlenite. Accepted to
the Astrophysical Journal, Dec. 2, 200
- âŚ