16,022 research outputs found

    Bifurcation analysis and phase diagram of a spin-string model with buckled states

    Get PDF
    We analyze a one-dimensional spin-string model, in which string oscillators are linearly coupled to their two nearest neighbors and to Ising spins representing internal degrees of freedom. String-spin coupling induces a long-range ferromagnetic interaction among spins that competes with a spin-spin antiferromagnetic coupling. As a consequence, the complex phase diagram of the system exhibits different flat rippled and buckled states, with first or second order transition lines between states. The two-dimensional version of the model has a similar phase diagram, which has been recently used to explain the rippled to buckled transition observed in scanning tunnelling microscopy experiments with suspended graphene sheets. Here we describe in detail the phase diagram of the simpler one-dimensional model and phase stability using bifurcation theory. This gives additional insight into the physical mechanisms underlying the different phases and the behavior observed in experiments.Comment: 15 pages, 7 figure

    Spectroscopic Signatures of Electronic Excitations in Raman Scattering in Thin Films of Rhombohedral Graphite

    Full text link
    Rhombohedral graphite features peculiar electronic properties, including persistence of low-energy surface bands of a topological nature. Here, we study the contribution of electron-hole excitations towards inelastic light scattering in thin films of rhombohedral graphite. We show that, in contrast to the featureless electron-hole contribution towards Raman spectrum of graphitic films with Bernal stacking, the inelastic light scattering accompanied by electron-hole excitations in crystals with rhombohedral stacking produces distinct features in the Raman signal which can be used both to identify the stacking and to determine the number of layers in the film.Comment: 15 pages in preprint format, 4 figures, accepted versio

    Optical absorption of divalent metal tungstates: Correlation between the band-gap energy and the cation ionic radius

    Full text link
    We have carried out optical-absorption and reflectance measurements at room temperature in single crystals of AWO4 tungstates (A = Ba, Ca, Cd, Cu, Pb, Sr, and Zn). From the experimental results their band-gap energy has been determined to be 5.26 eV (BaWO4), 5.08 eV (SrWO4), 4.94 eV (CaWO4), 4.15 eV (CdWO4), 3.9-4.4 eV (ZnWO4), 3.8-4.2 eV (PbWO4), and 2.3 eV (CuWO4). The results are discussed in terms of the electronic structure of the studied tungstates. It has been found that those compounds where only the s electron states of the A2+ cation hybridize with the O 2p and W 5d states (e.g BaWO4) have larger band-gap energies than those where also p, d, and f states of the A2+ cation contribute to the top of the valence band and the bottom of the conduction band (e.g. PbWO4). The results are of importance in view of the large discrepancies existent in prevoiusly published data.Comment: 16 pages, 3 figures, 1 tabl

    Electronic Raman Scattering in Twistronic Few-Layer Graphene

    Get PDF
    We study electronic contribution to the Raman scattering signals of two-, three- and four-layer graphene with layers at one of the interfaces twisted by a small angle with respect to each other. We find that the Raman spectra of these systems feature two peaks produced by van Hove singularities in moir\'{e} minibands of twistronic graphene, one related to direct hybridization of Dirac states, and the other resulting from band folding caused by moir\'{e} superlattice. The positions of both peaks strongly depend on the twist angle, so that their detection can be used for non-invasive characterization of the twist, even in hBN-encapsulated structures.Comment: 7 pages (including 4 figures) + 10 pages (3 figures) supplemen

    Emergence of simple patterns in many-body systems: from macroscopic objects to the atomic nucleus

    Full text link
    Strongly correlated many-body systems often display the emergence of simple patterns and regular behaviour of their global properties. Phenomena such as clusterization, collective motion and appearance of shell structures are commonly observed across different size, time, and energy scales in our universe. Although at the microscopic level their individual parts are described by complex interactions, the collective behaviour of these systems can exhibit strikingly regular patterns. This contribution provides an overview of the experimental signatures that are commonly used to identify the emergence of shell structures and collective phenomena in distinct physical systems. Examples in macroscopic systems are presented alongside features observed in atomic nuclei. The discussion is focused on the experimental trends observed for exotic nuclei in the vicinity of nuclear closed-shells, and the new challenges that recent experiments have posed in our understanding of emergent phenomena in nuclei.Comment: Invited contribution prepared for the special issue of "The tower of effective (field) theories and the emergence of nuclear phenomen

    Sokoto Coventry fingerprint dataset

    Get PDF
    This paper presents the Sokoto Coventry Fingerprint Dataset (SOCOFing), a biometric fingerprint database designed for academic research purposes. SOCOFing is made up of 6,000 fingerprint images from 600 African subjects. SOCOFing contains unique attributes such as labels for gender, hand and finger name as well as synthetically altered versions with three different levels of alteration for obliteration, central rotation, and z-cut. The dataset is freely available for noncommercial research purposes at: https://www.kaggle.com/ruizgara/socofin
    corecore