2,804 research outputs found

    4D Tropospheric Tomography using GPS Estimated Slant Delays

    Full text link
    Tomographic techniques are successfully applied to obtain 4D images of the tropospheric refractivity in a local dense network. In the lower atmosphere both the small height and time scales and the non-dispersive nature of tropospheric delays require a more careful analysis of the data. We show how GPS data is processed to obtain the tropospheric slant delays using the GIPSY-OASIS II software and define the concept of pseudo-wet delays, which will be the observables in the tomographic software. We then discuss the inverse problem in the 3D stochastic tomography, using simulated refractivity fields to test the system and the impact of noise. Finally, we use data from the Kilauea network in Hawaii and a local 4x4x41-voxel grid on a region of 400 Km2^2 and 15 Km in height to produce 4D refractivity fields. Results are compared with ECMWF forecast.Comment: 9 pages, 6 figures (2 color

    Energy Extraction From Gravitational Collapse to Static Black Holes

    Full text link
    The mass--energy formula of black holes implies that up to 50% of the energy can be extracted from a static black hole. Such a result is reexamined using the recently established analytic formulas for the collapse of a shell and expression for the irreducible mass of a static black hole. It is shown that the efficiency of energy extraction process during the formation of the black hole is linked in an essential way to the gravitational binding energy, the formation of the horizon and the reduction of the kinetic energy of implosion. Here a maximum efficiency of 50% in the extraction of the mass energy is shown to be generally attainable in the collapse of a spherically symmetric shell: surprisingly this result holds as well in the two limiting cases of the Schwarzschild and extreme Reissner-Nordstr\"{o}m space-times. Moreover, the analytic expression recently found for the implosion of a spherical shell onto an already formed black hole leads to a new exact analytic expression for the energy extraction which results in an efficiency strictly less than 100% for any physical implementable process. There appears to be no incompatibility between General Relativity and Thermodynamics at this classical level.Comment: 7 pages, 2 figures, to appear on Int. Journ. Mod. Phys.

    Introducing the black hole

    Get PDF
    The quasi-stellar object, the pulsar, the neutron star have all come onto the scene of physics within the space of a few years. Is the next entrant destined to be the black hole? If so, it is difficult to think of any development that could be of greater significance. A black hole, whether of “ordinary size” (approximately one solar mass, 1 M⊙) or much larger (around 10^6 M⊙ to 10^10 M⊙, as proposed in the nuclei of some galaxies), provides our “laboratory model” for the gravitational collapse, predicted by Einstein's theory, of the universe itself

    Exact versus approximate beaming formulas in Gamma-Ray Burst afterglows

    Get PDF
    We present the exact analytic expressions to compute, assuming the emitted Gamma-Ray Burst (GRB) radiation is not spherically symmetric but is confined into a narrow jet, the value of the detector arrival time at which we start to "see" the sides of the jet, both in the fully radiative and adiabatic regimes. We obtain this result using our exact analytic expressions for the EQuiTemporal Surfaces (EQTSs) in GRB afterglows. We re-examine the validity of three different approximate formulas currently adopted for the adiabatic regime in the GRB literature. We also present an empirical fit of the numerical solutions of the exact equations, compared and contrasted with the three above approximate formulas. The extent of the differences is such as to require a reassessment on the existence and entity of beaming in the cases considered in the current literature, as well as on its consequences on the GRB energetics.Comment: 4 pages, 4 figures, to appear on ApJ Let

    GRB 090227B: the missing link between the genuine short and long GRBs

    Full text link
    The time-resolved spectral analysis of GRB090227B, made possible by the Fermi-GBM data, allows to identify in this source the missing link between the genuine short and long GRBs. Within the Fireshell model [...] we predict genuine short GRBs: bursts with the same inner engine of the long bursts but endowed with a severely low value of the Baryon load, B<~5x10^{-5}. A first energetically predominant emission occurs at the transparency of the e+e- plasma, the Proper-GRB (P-GRB), followed by a softer emission, the extended afterglow. The typical separation between the two emissions is expected to be [...] 10^{-3}-10^{-2}s. We identify the P-GRB [...] in the first 96ms of emission, where a thermal component with [...] kT=(517+/-28)keV and a flux comparable with the non thermal part of the spectrum is observed. This non thermal component as well as the subsequent emission, where there is no evidence for a thermal spectrum, is identified with the extended afterglow. We deduce a theoretical cosmological redshift z=1.61+/-0.14. We then derive the total energy E^{tot}_{e+e-}=(2.83+/-0.15)x10^{53}erg, [...] B=(4.13+/-0.05)x10^{-5}, the Lorentz factor at transparency \Gamma_tr=(1.44+/-0.01)x10^4, and the intrinsic duration \Delta t'~0.35s. We also determine the average density of the CircumBurst Medium (CBM), =(1.90+/-0.20)x10^{-5} #/cm^3. There is no evidence of beaming in the system. In view of the energetics and of the Baryon load of the source, as well as of the low interstellar medium and of the intrinsic time scale of the signal, we identify the GRB progenitor as a binary neutron star. From the recent progress in the theory of neutron stars, we obtain masses of the stars m_1=m_2=1.34M_Sun and their corresponding radii R_1=R_2=12.24km and thickness of their crusts ~0.47km, consistent with the above values of the Baryon load, of the energetics and of the time duration of the event.Comment: 14 pages, 14 figures, new version with some updated references, matching the one actually appeared on Ap

    On the self-consistent general relativistic equilibrium equations of neutron stars

    Full text link
    We address the existence of globally neutral neutron star configurations in contrast with the traditional ones constructed by imposing local neutrality. The equilibrium equations describing this system are the Einstein-Maxwell equations which must be solved self-consistently with the general relativistic Thomas-Fermi equation and β\beta-equilibrium condition. To illustrate the application of this novel approach we adopt the Baym, Bethe, and Pethick (1971) strong interaction model of the baryonic matter in the core and of the white-dwarf-like material of the crust. We illustrate the crucial role played by the boundary conditions satisfied by the leptonic component of the matter at the interface between the core and the crust. For every central density an entire new family of equilibrium configurations exists for selected values of the Fermi energy of the electrons at the surface of the core. Each such configuration fulfills global charge neutrality and is characterized by a non-trivial electrodynamical structure. The electric field extends over a thin shell of thickness /(mec)\sim \hbar/(m_e c) between the core and the crust and becomes largely overcritical in the limit of decreasing values of the crust mass

    Novel constraints on fermionic dark matter from galactic observables I: The Milky Way

    Get PDF
    We have recently introduced a new model for the distribution of dark matter (DM) in galaxies based on a self-gravitating system of massive fermions at finite temperatures, the Ruffini-Arg\"uelles-Rueda (RAR) model. We show that this model, for fermion masses in the keV range, explains the DM halo of the Galaxy and predicts the existence of a denser quantum core at the center. We demonstrate here that the introduction of a cutoff in the fermion phase-space distribution, necessary to account for the finite Galaxy size, defines a new solution with a central core which represents an alternative to the black hole (BH) scenario for SgrA*. For a fermion mass in the range mc2=48mc^2 = 48 -- 345345~keV, the DM halo distribution is in agreement with the Milky Way rotation curve data, while harbors a dense quantum core of about 4×106M4\times10^6 M_\odot within the S2-star pericenter.Comment: 11 pages, 5 figures. Published in Physics of the Dark Univers

    Pair plasma relaxation time scales

    Full text link
    By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.Comment: Phys. Rev. E, in pres
    corecore