56,741 research outputs found
The Necessity of the Good Person Prosecutor
In a 2001 essay, Professor Abbe Smith asked the question whether a good person—i.e., a person who is committed to social justice—can be a good prosecutor. Although she acknowledged some hope that the answer to her question could be “yes,” Professor Smith concluded that the answer then was “no”—in part because she saw individual prosecutors generally as having very little discretion to “temper the harsh reality of the criminal justice system.” In this Online Symposium revisiting Professor Smith’s question seventeen years later, my answer to her question is “yes”—a good person can be a good prosecutor
Giant Resonances based on Unitarily Transformed Two-Nucleon plus Phenomenological Three-Nucleon Interactions
We investigate giant resonances of spherical nuclei on the basis of the
Argonne V18 potential after unitary transformation within the Similarity
Renormalization Group or the Unitary Correlation Operator Method supplemented
by a phenomenological three-body contact interaction. Such Hamiltonians can
provide a good description of ground-state energies and radii within
Hartree-Fock plus low-order many-body perturbation theory. The standard Random
Phase Approximation is applied here to calculate the isoscalar monopole,
isovector dipole, and isoscalar quadrupole excitation modes of the 40Ca, 90Zr,
and 208Pb nuclei. Thanks to the inclusion of the three-nucleon interaction and
despite the minimal optimization effort, a reasonable agreement with
experimental centroid energies of all three modes has been achieved. The role
and scope of the Hartree-Fock reference state in RPA methods are discussed.Comment: v2: 11 pages, incl. 3 figures; extended discussion and outlook; to
appear in J.Phys.
Electroweak Radiative Corrections to Off-Shell W-Pair Production
We briefly describe the RacoonWW approach to calculate radiative corrections
to e+ e- -> W W -> 4 fermions and present numerical results for the total
W-pair production cross section at LEP2.Comment: 3 pages, 2 figures, talk given at the DPF2000 meeting, Columbus, OH,
August 9-12, 200
Vibration
Physiological and biomechanical responses of humans to vibrations during manned space flight and threshold data on tolerances to various vibrational modes and condition
Efficiency versus Convergence of Boolean Kernels for On-Line Learning Algorithms
The paper studies machine learning problems where each example is described
using a set of Boolean features and where hypotheses are represented by linear
threshold elements. One method of increasing the expressiveness of learned
hypotheses in this context is to expand the feature set to include conjunctions
of basic features. This can be done explicitly or where possible by using a
kernel function. Focusing on the well known Perceptron and Winnow algorithms,
the paper demonstrates a tradeoff between the computational efficiency with
which the algorithm can be run over the expanded feature space and the
generalization ability of the corresponding learning algorithm. We first
describe several kernel functions which capture either limited forms of
conjunctions or all conjunctions. We show that these kernels can be used to
efficiently run the Perceptron algorithm over a feature space of exponentially
many conjunctions; however we also show that using such kernels, the Perceptron
algorithm can provably make an exponential number of mistakes even when
learning simple functions. We then consider the question of whether kernel
functions can analogously be used to run the multiplicative-update Winnow
algorithm over an expanded feature space of exponentially many conjunctions.
Known upper bounds imply that the Winnow algorithm can learn Disjunctive Normal
Form (DNF) formulae with a polynomial mistake bound in this setting. However,
we prove that it is computationally hard to simulate Winnows behavior for
learning DNF over such a feature set. This implies that the kernel functions
which correspond to running Winnow for this problem are not efficiently
computable, and that there is no general construction that can run Winnow with
kernels
Effect of hybridization on the magnetic properties of correlated two-band metals
The magnetic properties of transition-like metals are discussed within the
single site approximation, which is a picture to take into account electron
correlations. The metal is described by two hybridized bands one of which
includes Coulomb correlation. The presented results indicate that
ferromagnetism arises for adequate values of hybridization (V), correlation (U)
and occupation number(). Some similarities with Dynamical
Mean-Field Theory (DMFT) are indicated.Comment: 3 pages, 3 figures, presented at the 53rd MMM08 conference in Austin,
200
Pareto optimality in house allocation problems
We study Pareto optimal matchings in the context of house allocation problems. We present an O(\sqrt{n}m) algorithm, based on Gales Top Trading Cycles Method, for finding a maximum cardinality Pareto optimal matching, where n is the number of agents and m is the total length of the preference lists. By contrast, we show that the problem of finding a minimum cardinality Pareto optimal matching is NP-hard, though approximable within a factor of 2. We then show that there exist Pareto optimal matchings of all sizes between a minimum and maximum cardinality Pareto optimal matching. Finally, we introduce the concept of a signature, which allows us to give a characterization, checkable in linear time, of instances that admit a unique Pareto optimal matching
- …
