360 research outputs found

    Give Me More Body: Pushing the Boundaries of Body and Soul

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43553/1/11133_2005_Article_4214.pd

    The polymorphic nature of the human dopamine D4 receptor gene: A comparative analysis of known variants and a novel 27 bp deletion in the promoter region

    Get PDF
    BACKGROUND: The human dopamine D4 receptor (DRD4) is a candidate gene of great interest in molecular studies of human personality and psychiatric disorders. This gene is unique in having an exceptionally high amount of polymorphic sites both in the coding and in the promoter region. RESULTS: We report the identification of a new 27 bp deletion starting 524 bp upstream of the initiation codon (27 bp del) of the dopamine D4 receptor (DRD4) gene, in the close vicinity of the -521C>T SNP. The presence of the 27 bp deletion leads to the misgenotyping of the -616C>G SNP by the Sau96 I RFLP method, thus the genotype determination of the mutation is of additional importance. The frequency of this novel sequence variation is considerably low (allele frequency is = 0.16%), as no homozygotes, and only 3 heterozygote carriers were found in a healthy, unrelated Caucasian sample (N = 955). CONCLUSION: Remarkably, the deleted region contains consensus sequences of binding sites for several known transcription factors, suggesting that the different alleles may affect the transcriptional regulation of the gene. A comparison of methods and results for the allelic variations of the DRD4 gene in various ethnic groups is also discussed, which has a high impact in psychiatric genetic studies

    Paediatrician\u27s guide to post-operative care for functionally univentricular CHD: A review

    Get PDF
    IMPORTANCE: Single ventricle CHD affects about 5 out of 100,000 newborns, resulting in complex anatomy often requiring multiple, staged palliative surgeries. Paediatricians are an essential part of the team that cares for children with single ventricle CHD. These patients often encounter their paediatrician first when a complication arises, so it is critical to ensure the paediatrician is knowledgeable of these issues to provide optimal care. OBSERVATIONS: We reviewed the subtypes of single ventricle heart disease and the various palliative surgeries these patients undergo. We then searched the literature to detail the general paediatrician\u27s approach to single ventricle patients at different stages of surgical palliation. CONCLUSIONS AND RELEVANCE: Single ventricle patients undergo staged palliation that drastically changes physiology after each intervention. Coordinated care between their paediatrician and cardiologist is requisite to provide excellent care. This review highlights what to expect when these patients are seen by their paediatrician for either well child visits or additional visits for parental or patient concern

    A Role for ATF2 in Regulating MITF and Melanoma Development

    Get PDF
    The transcription factor ATF2 has been shown to attenuate melanoma susceptibility to apoptosis and to promote its ability to form tumors in xenograft models. To directly assess ATF2's role in melanoma development, we crossed a mouse melanoma model (Nras(Q61K)::Ink4a⁻/⁻) with mice expressing a transcriptionally inactive form of ATF2 in melanocytes. In contrast to 7/21 of the Nras(Q61K)::Ink4a⁻/⁻ mice, only 1/21 mice expressing mutant ATF2 in melanocytes developed melanoma. Gene expression profiling identified higher MITF expression in primary melanocytes expressing transcriptionally inactive ATF2. MITF downregulation by ATF2 was confirmed in the skin of Atf2⁻/⁻ mice, in primary human melanocytes, and in 50% of human melanoma cell lines. Inhibition of MITF transcription by MITF was shown to be mediated by ATF2-JunB-dependent suppression of SOX10 transcription. Remarkably, oncogenic BRAF (V600E)-dependent focus formation of melanocytes on soft agar was inhibited by ATF2 knockdown and partially rescued upon shMITF co-expression. On melanoma tissue microarrays, a high nuclear ATF2 to MITF ratio in primary specimens was associated with metastatic disease and poor prognosis. Our findings establish the importance of transcriptionally active ATF2 in melanoma development through fine-tuning of MITF expression

    A Weakened Transcriptional Enhancer Yields Variegated Gene Expression

    Get PDF
    Identical genes in the same cellular environment are sometimes expressed differently. In some cases, including the immunoglobulin heavy chain (IgH) locus, this type of differential gene expression has been related to the absence of a transcriptional enhancer. To gain additional information on the role of the IgH enhancer, we examined expression driven by enhancers that were merely weakened, rather than fully deleted, using both mutations and insulators to impair enhancer activity. For this purpose we used a LoxP/Cre system to place a reporter gene at the same genomic site of a stable cell line. Whereas expression of the reporter gene was uniformly high in the presence of the normal, uninsulated enhancer and undetectable in its absence, weakened enhancers yielded variegated expression of the reporter gene; i.e., the average level of expression of the same gene differed in different clones, and expression varied significantly among cells within individual clones. These results indicate that the weakened enhancer allows the reporter gene to exist in at least two states. Subtle aspects of the variegation suggest that the IgH enhancer decreases the average duration (half-life) of the silent state. This analysis has also tested the conventional wisdom that enhancer activity is independent of distance and orientation. Thus, our analysis of mutant (truncated) forms of the IgH enhancer revealed that the 250 bp core enhancer was active in its normal position, ∼1.4 kb 3′ of the promoter, but inactive ∼6 kb 3′, indicating that the activity of the core enhancer was distance-dependent. A longer segment – the core enhancer plus ∼1 kb of 3′ flanking material, including the 3′ matrix attachment region – was active, and the activity of this longer segment was orientation-dependent. Our data suggest that this 3′ flank includes binding sites for at least two activators

    β-Catenin-Independent Activation of TCF1/LEF1 in Human Hematopoietic Tumor Cells through Interaction with ATF2 Transcription Factors

    Full text link
    The role of Wnt signaling in embryonic development and stem cell maintenance is well established and aberrations leading to the constitutive up-regulation of this pathway are frequent in several types of human cancers. Upon ligand-mediated activation, Wnt receptors promote the stabilization of β-catenin, which translocates to the nucleus and binds to the T-cell factor/lymphoid enhancer factor (TCF/LEF) family of transcription factors to regulate the expression of Wnt target genes. When not bound to β-catenin, the TCF/LEF proteins are believed to act as transcriptional repressors. Using a specific lentiviral reporter, we identified hematopoietic tumor cells displaying constitutive TCF/LEF transcriptional activation in the absence of β-catenin stabilization. Suppression of TCF/LEF activity in these cells mediated by an inducible dominant-negative TCF4 (DN-TCF4) inhibited both cell growth and the expression of Wnt target genes. Further, expression of TCF1 and LEF1, but not TCF4, stimulated TCF/LEF reporter activity in certain human cell lines independently of β-catenin. By a complementary approach in vivo, TCF1 mutants, which lacked the ability to bind to β-catenin, induced Xenopus embryo axis duplication, a hallmark of Wnt activation, and the expression of the Wnt target gene Xnr3. Through generation of different TCF1-TCF4 fusion proteins, we identified three distinct TCF1 domains that participate in the β-catenin-independent activity of this transcription factor. TCF1 and LEF1 physically interacted and functionally synergized with members of the activating transcription factor 2 (ATF2) family of transcription factors. Moreover, knockdown of ATF2 expression in lymphoma cells phenocopied the inhibitory effects of DN-TCF4 on the expression of target genes associated with the Wnt pathway and on cell growth. Together, our findings indicate that, through interaction with ATF2 factors, TCF1/LEF1 promote the growth of hematopoietic malignancies in the absence of β-catenin stabilization, thus establishing a new mechanism for TCF1/LEF1 transcriptional activity distinct from that associated with canonical Wnt signaling

    Prebiotic-Induced Anti-tumor Immunity Attenuates Tumor Growth

    Get PDF
    Growing evidence supports the importance of gut microbiota in the control of tumor growth and response to therapy. Here, we select prebiotics that can enrich bacterial taxa that promote anti-tu- mor immunity. Addition of the prebiotics inulin or mucin to the diet of C57BL/6 mice induces anti-tu- mor immune responses and inhibition of BRAF mutant melanoma growth in a subcutaneously implanted syngeneic mouse model. Mucin fails to inhibit tumor growth in germ-free mice, indicating that the gut microbiota is required for the activation of the anti-tumor immune response. Inulin and mucin drive distinct changes in the microbiota, as inulin, but not mucin, limits tumor growth in synge- neic mouse models of colon cancer and NRAS mutant melanoma and enhances the efficacy of a MEK inhibitor against melanoma while delaying the emergence of drug resistance. We highlight the importance of gut microbiota in anti-tumor immunity and the potential therapeutic role for prebiotics in this process

    Regulation of Glutamine Carrier Proteins by RNF5 Determines Breast Cancer Response to ER Stress-Inducing Chemotherapies

    Get PDF
    SummaryMany tumor cells are fueled by altered metabolism and increased glutamine (Gln) dependence. We identify regulation of the L-glutamine carrier proteins SLC1A5 and SLC38A2 (SLC1A5/38A2) by the ubiquitin ligase RNF5. Paclitaxel-induced ER stress to breast cancer (BCa) cells promotes RNF5 association, ubiquitination, and degradation of SLC1A5/38A2. This decreases Gln uptake, levels of TCA cycle components, mTOR signaling, and proliferation while increasing autophagy and cell death. Rnf5-deficient MMTV-PyMT mammary tumors were less differentiated and showed elevated SLC1A5 expression. Whereas RNF5 depletion in MDA-MB-231 cells promoted tumorigenesis and abolished paclitaxel responsiveness, SLC1A5/38A2 knockdown elicited opposing effects. Inverse RNF5hi/SLC1A5/38A2lo expression was associated with positive prognosis in BCa. Thus, RNF5 control of Gln uptake underlies BCa response to chemotherapies
    corecore